論文の概要: Towards Desiderata-Driven Design of Visual Counterfactual Explainers
- arxiv url: http://arxiv.org/abs/2506.14698v1
- Date: Tue, 17 Jun 2025 16:38:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.576928
- Title: Towards Desiderata-Driven Design of Visual Counterfactual Explainers
- Title(参考訳): Desiderata-Driven Design of Visual Counterfactal Explainer
- Authors: Sidney Bender, Jan Herrmann, Klaus-Robert Müller, Grégoire Montavon,
- Abstract要約: 既存の視覚的反事実的説明者は、忠実さ、理解可能性、満足度などの説明のために、より包括的なデシダータを考えることができない。
本稿では,これらのメカニズムを,合成データおよび実データに対する体系的評価を通じて,新しい「非現実的逆探索法」アルゴリズムと組み合わせ,その効果を実証する。
- 参考スコア(独自算出の注目度): 15.84155621554658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual counterfactual explainers (VCEs) are a straightforward and promising approach to enhancing the transparency of image classifiers. VCEs complement other types of explanations, such as feature attribution, by revealing the specific data transformations to which a machine learning model responds most strongly. In this paper, we argue that existing VCEs focus too narrowly on optimizing sample quality or change minimality; they fail to consider the more holistic desiderata for an explanation, such as fidelity, understandability, and sufficiency. To address this shortcoming, we explore new mechanisms for counterfactual generation and investigate how they can help fulfill these desiderata. We combine these mechanisms into a novel 'smooth counterfactual explorer' (SCE) algorithm and demonstrate its effectiveness through systematic evaluations on synthetic and real data.
- Abstract(参考訳): VCE(Visual counterfactual explainer)は、画像分類器の透明性を高めるための、単純かつ有望なアプローチである。
VCEは、機械学習モデルが最も強く反応する特定のデータ変換を明らかにすることで、機能属性などの他のタイプの説明を補完する。
本稿では,既存のVCEが標本品質の最適化や最小限の変更に焦点を絞りすぎていることを論じる。
この欠点に対処するために、我々は反事実生成の新しいメカニズムを探求し、これらのデシデラタの実現にどのように役立つかを探る。
我々はこれらのメカニズムを新しい「スムース・カウンティファクト・エクスプローラー(SCE)」アルゴリズムと組み合わせ、合成データおよび実データに対する体系的評価を通じてその効果を実証する。
関連論文リスト
- Exploring Energy Landscapes for Minimal Counterfactual Explanations: Applications in Cybersecurity and Beyond [3.6963146054309597]
説明可能な人工知能(XAI)において、対物的説明が顕著な方法として浮上している。
本稿では、摂動理論と統計力学を統合し、最小限の反実的説明を生成する新しい枠組みを提案する。
提案手法は,妥当性を維持しつつモデルの予測を変更するために必要な最小限の修正を系統的に同定する。
論文 参考訳(メタデータ) (2025-03-23T19:48:37Z) - Explainable Deep Learning Framework for Human Activity Recognition [3.9146761527401424]
本稿では,HARモデルの解釈性と有効性を高めるモデル非依存フレームワークを提案する。
競争力のあるデータ拡張を実装することで、我々のフレームワークはモデル決定の直感的でアクセスしやすい説明を提供する。
論文 参考訳(メタデータ) (2024-08-21T11:59:55Z) - CoLa-DCE -- Concept-guided Latent Diffusion Counterfactual Explanations [2.3083192626377755]
概念誘導型遅延拡散対実例(CoLa-DCE)を紹介する。
CoLa-DCEは、概念選択と空間条件に関する高度な制御を持つ任意の分類器に対して、概念誘導対物を生成する。
我々は,複数の画像分類モデルとデータセットにまたがって,最小化と理解性のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2024-06-03T14:27:46Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Manipulating Feature Visualizations with Gradient Slingshots [53.94925202421929]
特徴可視化(FV)は、ディープニューラルネットワーク(DNN)で学んだ概念を解釈するための広く使われている手法である。
本稿では,モデルアーキテクチャを変更したり,性能を著しく劣化させたりすることなくFVの操作を可能にする新しい手法,Gradient Slingshotsを提案する。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
視覚的対物的説明法(VCE)の最新手法は、深い生成モデルの力を利用して、印象的な画質の高次元画像の新しい例を合成する。
評価手順が大きく異なり,個々の実例の視覚検査や小規模なユーザスタディなど,これらのVCE手法の性能を比較することは,現時点では困難である。
本稿では,VCE手法の体系的,定量的評価のためのフレームワークと,使用する指標の最小セットを提案する。
論文 参考訳(メタデータ) (2023-08-11T12:22:37Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
事実的説明は、機械学習の決定を局所的に説明するための手法のクラスである。
本稿では,予測器と対実生成器を組み合わせたモデルアーキテクチャであるVCNet-Variational Counter Netを提案する。
我々はVCNetが予測を生成でき、また、別の最小化問題を解くことなく、反現実的な説明を生成できることを示した。
論文 参考訳(メタデータ) (2022-12-21T08:45:32Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the
Machine-Learning Black Box [1.7534486934148554]
解釈可能性のアプローチは、ユーザが待つことなく、実行可能な洞察を提供するべきです。
本稿では,グローバルレベルとローカルレベルの両方で特徴的重要性のスコアを迅速に提供する解釈可能性アプローチである,アクセレーションモデル非依存説明(AcME)を提案する。
AcMEは機能ランキングを計算しますが、機能値の変化がモデル予測にどのように影響するかを評価するために、What-if分析ツールも提供しています。
論文 参考訳(メタデータ) (2021-12-23T15:18:13Z) - Designing Counterfactual Generators using Deep Model Inversion [31.1607056675927]
本研究では,あるクエリー画像に対する反実的説明を生成するための深い逆変換手法を開発する。
視覚的に意味のある説明を生成することに加えて、disCの反事実は意思決定境界の学習に有効であり、未知のテストタイムの汚職に対して堅牢であることがわかった。
論文 参考訳(メタデータ) (2021-09-29T08:40:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。