Large effects from quantum reference frames
- URL: http://arxiv.org/abs/2506.14721v1
- Date: Tue, 17 Jun 2025 16:55:32 GMT
- Title: Large effects from quantum reference frames
- Authors: Martin Bojowald, Luis Martinez,
- Abstract summary: A procedure is used to describe non-monotonic reference scales in a quantum treatment.<n>It reveals large quantum effects in the measured system whenever a reference frame encounters a turning point.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reference frames are used to parameterize measurements of physical effects, but since their practical realization uses material objects, they may affect observations performed in a combined quantum state of the measured system together with the frame. Here, a procedure is used that makes it possible to describe non-monotonic reference scales in a quantum treatment, revealing large quantum effects in the measured system whenever a reference frame encounters a turning point. Subtle quantum correlations in the combined state of system and frame, and more broadly the concept of relational quantum mechanics, can be tested via a characteristic and surprisingly large shift in the measured value.
Related papers
- Designing open quantum systems for enabling quantum enhanced sensing through classical measurements [0.0]
We show that many-body quantum enhancement can in fact be obtained through classical measurements.<n>We illustrate this in detail for a class of open spin-boson models which can be realized in trapped-ion or cavity QED setups.
arXiv Detail & Related papers (2025-05-13T17:20:13Z) - Effects of the Hubbard interaction on the quantum metric [0.0]
We investigate the role of interaction effects on the quantum metric.<n>We show that the repulsive Hubbard interaction monotonically suppresses the quantum metric.<n>Our conclusion holds for both flat-band and dispersive systems.
arXiv Detail & Related papers (2024-12-03T19:00:03Z) - Entanglement measurement based on convex hull properties [0.0]
We will propose a scheme for measuring quantum entanglement, which starts with treating the set of quantum separable states as a convex hull of quantum separable pure states.
Although a large amount of data is required in the measurement process, this method is not only applicable to 2-qubit quantum states, but also a entanglement measurement method that can be applied to any dimension and any fragment.
arXiv Detail & Related papers (2024-11-08T08:03:35Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.<n>This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Fisher information as general metrics of quantum synchronization [23.786196134544927]
We propose using classical and quantum Fisher information (FI) as alternative metrics to detect and measure quantum synchronization.
We show advantages in FI-based measures, especially in 2-to-1 synchronization.
arXiv Detail & Related papers (2023-06-12T07:03:59Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Quantum Back-action Limits in Dispersively Measured Bose-Einstein
Condensates [0.0]
We theoretically and experimentally characterize quantum back-action in atomic Bose-Einstein condensates interacting with a far-from resonant laser beam.
We experimentally quantify the resulting wavefunction change in terms of the contrast of a Ramsey interferometer.
This result is a necessary precursor for achieving true quantum back-action limited measurements of quantum gases.
arXiv Detail & Related papers (2022-09-09T17:04:36Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.