Designing open quantum systems for enabling quantum enhanced sensing through classical measurements
- URL: http://arxiv.org/abs/2505.08756v2
- Date: Mon, 16 Jun 2025 10:04:06 GMT
- Title: Designing open quantum systems for enabling quantum enhanced sensing through classical measurements
- Authors: Robert Mattes, Albert Cabot, Federico Carollo, Igor Lesanovsky,
- Abstract summary: We show that many-body quantum enhancement can in fact be obtained through classical measurements.<n>We illustrate this in detail for a class of open spin-boson models which can be realized in trapped-ion or cavity QED setups.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum systems in nonequilibrium conditions, where coherent many-body interactions compete with dissipative effects, can feature rich phase diagrams and emergent critical behavior. Associated collective effects, together with the continuous observation of quanta dissipated into the environment -- typically photons -- allow to achieve quantum enhanced parameter estimation. However, protocols for tapping this enhancement typically involve intricate measurements on the combined system-environment state. Here we show that many-body quantum enhancement can in fact be obtained through classical measurements, such as photon counting and homodyne detection. We illustrate this in detail for a class of open spin-boson models which can be realized in trapped-ion or cavity QED setups. Our findings highlight a route towards the design of systems that enable a practical implementation of quantum enhanced metrology through continuous classical measurements.
Related papers
- Anticipating Decoherence: a Predictive Framework for Enhancing Coherence in Quantum Emitters [96.41185946460115]
We develop an anticipatory framework for forecasting and decoherence engineering in remote quantum emitters.<n>We show that a machine learning model trained on limited data can accurately forecast unseen spectral behavior.<n>These results pave the way for real-time decoherence engineering in scalable quantum systems.
arXiv Detail & Related papers (2025-08-04T17:23:14Z) - Large effects from quantum reference frames [0.0]
A procedure is used to describe non-monotonic reference scales in a quantum treatment.<n>It reveals large quantum effects in the measured system whenever a reference frame encounters a turning point.
arXiv Detail & Related papers (2025-06-17T16:55:32Z) - Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.<n>This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.<n>The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - Quantum-limited generalized measurement for tunnel-coupled condensates [0.4335300149154109]
We implement a generalized measurement scheme based on controlled outcoupling of atoms.
This gives us simultaneous access to number imbalance and relative phase in a system of two tunnel-coupled 1D Bose gases.
arXiv Detail & Related papers (2024-08-13T16:06:59Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum Simulation of Spin-Boson Models with Structured Bath [1.7148514211041472]
Trapped ions present a natural platform for simulating the quantum dynamics of open quantum systems.
We demonstrate the capability for adjusting the bath's temperature and continuous spectral density by adding randomness to fully programmable control parameters.
The experimental outcomes closely align with theoretical predictions, indicating successful simulation of open quantum systems using a trapped-ion system.
arXiv Detail & Related papers (2024-05-23T14:32:04Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Coherent pair injection as a route towards the enhancement of supersolid
order in many-body bosonic models [10.558584245799253]
Quantum simulators allow for processes that are typically not considered in condensed-matter physics.
In this work we examine the impact of coherent pair injection, a process readily available in superconducting circuit arrays.
We prove that this process favors both superfluid and density-wave order, as opposed to insulation or homogeneous states.
arXiv Detail & Related papers (2023-12-06T17:12:51Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Daemonic ergotropy in continuously-monitored open quantum batteries [0.0]
daemonic ergotropy is introduced to properly describe and quantify this work extraction enhancement in the quantum regime.
We show that the corresponding daemonic ergotropy takes values between the ergotropy and the energy of the corresponding unconditional state.
The upper bound is achieved by assuming an initial pure state and a perfectly efficient projective measurement on the environment.
arXiv Detail & Related papers (2023-02-23T19:04:47Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics [0.0]
We review the recent developments and the current status in the field of quantum-gas cavity QED.
Composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.