Optimizing Length Compression in Large Reasoning Models
- URL: http://arxiv.org/abs/2506.14755v1
- Date: Tue, 17 Jun 2025 17:50:16 GMT
- Title: Optimizing Length Compression in Large Reasoning Models
- Authors: Zhengxiang Cheng, Dongping Chen, Mingyang Fu, Tianyi Zhou,
- Abstract summary: Large Reasoning Models (LRMs) often suffer from producing unnecessary and verbose reasoning chains.<n>We propose two new, fine-grained principles: Brevity, which advocates for eliminating redundancy, and Sufficiency, which ensures critical reasoning steps are preserved.<n> LC-R1 employs a novel combination of a Reward Length for overall conciseness and a Compress Reward that is specifically designed to remove the invalid portion of the thinking process.
- Score: 15.730667464815548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Reasoning Models (LRMs) have achieved remarkable success, yet they often suffer from producing unnecessary and verbose reasoning chains. We identify a core aspect of this issue as "invalid thinking" -- models tend to repeatedly double-check their work after having derived the correct answer. To address this specific inefficiency, we move beyond the general principles of Efficacy and Efficiency to propose two new, fine-grained principles: Brevity, which advocates for eliminating redundancy, and Sufficiency, which ensures critical reasoning steps are preserved. Guided by these principles, we introduce LC-R1, a post-training method based on Group Relative Policy Optimization (GRPO). LC-R1 employs a novel combination of a Length Reward for overall conciseness and a Compress Reward that is specifically designed to remove the invalid portion of the thinking process. Extensive experiments on multiple reasoning benchmarks demonstrate that LC-R1 achieves a significant reduction in sequence length (~50%) with only a marginal (~2%) drop in accuracy, achieving a favorable trade-off point on the Pareto frontier that prioritizes high compression. Our analysis further validates the robustness of LC-R1 and provides valuable insights for developing more powerful yet computationally efficient LRMs. Our code is released at https://github.com/zxiangx/LC-R1.
Related papers
- R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning [60.37610817226533]
Chain-of-thought (CoT) reasoning encourages step-by-step intermediate reasoning during inference.<n>CoT introduces substantial computational overhead due to its reliance on autoregressive decoding over long token sequences.<n>We present R-Stitch, a token-level, confidence-based hybrid decoding framework that accelerates CoT inference.
arXiv Detail & Related papers (2025-07-23T08:14:36Z) - SmartThinker: Learning to Compress and Preserve Reasoning by Step-Level Length Control [5.224609066309358]
Large reasoning models (LRMs) have exhibited remarkable reasoning capabilities through inference-time scaling.<n>Previous work has attempted to mitigate this issue by penalizing the overall length of generated samples during reinforcement learning.<n>We propose SmartThinker, a two-stage learnable framework designed to enable fine-grained control over the length of reasoning chains.
arXiv Detail & Related papers (2025-07-06T11:21:47Z) - AALC: Large Language Model Efficient Reasoning via Adaptive Accuracy-Length Control [18.273777938294327]
Large reasoning models (LRMs) achieve impressive reasoning capabilities by generating lengthy chain-of-thoughts.<n>We introduce AALC, a lightweight, accuracy-aware length reward integrated into reinforcement learning.<n>We show that our approach reduces response length by over 50% while maintaining or even improving the original accuracy.
arXiv Detail & Related papers (2025-06-25T06:29:18Z) - ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
Recent advancements in large reasoning models (LRMs) have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT)<n>We propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint during the token generation of the reasoning process.<n>Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well.
arXiv Detail & Related papers (2025-06-23T16:20:44Z) - GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning.<n>Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate.<n>We propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision.
arXiv Detail & Related papers (2025-06-19T08:49:13Z) - OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation [33.008513399946914]
OThink-R1 is a method that prunes redundant reasoning steps while preserving logical validity.<n> Experiments across mathematical and question-answering tasks demonstrate that OThink-R1 reduces reasoning redundancy by almost 23% on average.
arXiv Detail & Related papers (2025-06-03T03:31:30Z) - Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning [10.255235456427037]
We propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in Large Language Models (LLMs)<n>The first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization.<n>The second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization.
arXiv Detail & Related papers (2025-05-27T13:29:51Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - Learn to Reason Efficiently with Adaptive Length-based Reward Shaping [23.626013831589212]
Large Reasoning Models (LRMs) have shown remarkable capabilities in solving complex problems through reinforcement learning (RL)<n>We present a unified framework that formulates various efficient reasoning methods through the lens of length-based reward shaping.<n>Experiments on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Qwen-32B show that our approach significantly enhances both reasoning performance and response length efficiency.
arXiv Detail & Related papers (2025-05-21T15:03:26Z) - ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning [75.1101108949743]
Large Reasoning Models (LRMs) perform strongly in complex reasoning tasks via Chain-of-Thought (CoT) prompting.<n>LRMs often suffer from verbose outputs caused by redundant content, increasing computational overhead, and degrading user experience.<n>We propose ConCISE, a framework that simplifies reasoning chains by reinforcing the model's confidence during inference.
arXiv Detail & Related papers (2025-05-08T01:40:40Z) - SEAL: Steerable Reasoning Calibration of Large Language Models for Free [58.190800043449336]
Large Language Models (LLMs) have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism.<n>Recent studies reveal substantial redundancy in the CoT reasoning traces, which negatively impacts model performance.<n>We introduce SEAL, a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains.
arXiv Detail & Related papers (2025-04-07T02:42:07Z) - Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning [6.44608398856033]
Rec-R1 bridges large language models (LLMs) with recommendation systems through closed-loop optimization.<n>Unlike prompting and supervised fine-tuning (SFT), Rec-R1 directly optimize LLM generation using feedback from a fixed black-box recommendation model.
arXiv Detail & Related papers (2025-03-31T16:36:00Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.