SimBank: from Simulation to Solution in Prescriptive Process Monitoring
- URL: http://arxiv.org/abs/2506.14772v3
- Date: Wed, 02 Jul 2025 09:09:00 GMT
- Title: SimBank: from Simulation to Solution in Prescriptive Process Monitoring
- Authors: Jakob De Moor, Hans Weytjens, Johannes De Smedt, Jochen De Weerdt,
- Abstract summary: SimBank is a simulator designed for accurate benchmarking of PresPM methods.<n>It incorporates a variety of intervention optimization problems with differing levels of complexity.<n>SimBank additionally offers a comprehensive evaluation capability.
- Score: 4.9185678564997355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prescriptive Process Monitoring (PresPM) is an emerging area within Process Mining, focused on optimizing processes through real-time interventions for effective decision-making. PresPM holds significant promise for organizations seeking enhanced operational performance. However, the current literature faces two key limitations: a lack of extensive comparisons between techniques and insufficient evaluation approaches. To address these gaps, we introduce SimBank: a simulator designed for accurate benchmarking of PresPM methods. Modeled after a bank's loan application process, SimBank enables extensive comparisons of both online and offline PresPM methods. It incorporates a variety of intervention optimization problems with differing levels of complexity and supports experiments on key causal machine learning challenges, such as assessing a method's robustness to confounding in data. SimBank additionally offers a comprehensive evaluation capability: for each test case, it can generate the true outcome under each intervention action, which is not possible using recorded datasets. The simulator incorporates parallel activities and loops, drawing from common logs to generate cases that closely resemble real-life process instances. Our proof of concept demonstrates SimBank's benchmarking capabilities through experiments with various PresPM methods across different interventions, highlighting its value as a publicly available simulator for advancing research and practice in PresPM.
Related papers
- Rethinking BPS: A Utility-Based Evaluation Framework [6.590869939300887]
State-of-the-art approach to evaluating BPS models has two key limitations.<n>It treats simulation as a forecasting problem, testing whether models can predict unseen future events.<n>We propose a novel framework that evaluates simulation quality based on its ability to generate representative process behavior.
arXiv Detail & Related papers (2025-05-28T13:00:52Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.<n>We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference [12.019504660711231]
We introduce sequential neural posterior estimation (ASNPE)<n>ASNPE brings an active learning scheme into the inference loop to estimate the utility of simulation parameter candidates to the underlying probabilistic model.<n>Our method outperforms well-tuned benchmarks and state-of-the-art posterior estimation methods on a large-scale real-world traffic network.
arXiv Detail & Related papers (2024-12-07T08:57:26Z) - Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning [63.55145330447408]
We propose a novel textbfSelf-textbfPerceptinon textbfTuning (textbfSPT) method for anomaly segmentation.<n>The SPT method incorporates a self-drafting tuning strategy, which generates an initial coarse draft of the anomaly mask, followed by a refinement process.
arXiv Detail & Related papers (2024-11-26T08:33:25Z) - AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation [6.590869939300887]
Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios.
This paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log.
Our experiments show that AgentSimulator achieves computation state-of-the-art simulation accuracy with significantly lower times than existing approaches.
arXiv Detail & Related papers (2024-08-16T07:19:11Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
We introduce CausalBench, a benchmark suite for evaluating causal inference methods on real-world interventional data.
CaulBench incorporates biologically-motivated performance metrics, including new distribution-based interventional metrics.
arXiv Detail & Related papers (2022-10-31T13:04:07Z) - A Modular Framework for Reinforcement Learning Optimal Execution [68.8204255655161]
We develop a modular framework for the application of Reinforcement Learning to the problem of Optimal Trade Execution.
The framework is designed with flexibility in mind, in order to ease the implementation of different simulation setups.
arXiv Detail & Related papers (2022-08-11T09:40:42Z) - Test and Evaluation of Quadrupedal Walking Gaits through Sim2Real Gap
Quantification [17.11389201781203]
The authors propose a two-step approach to evaluate and verify a true system's capacity to satisfy its operational objective.
We show that the same procedure can discriminate between different environments by identifying the Sim2Real Gap between a simulator and its hardware counterpart.
arXiv Detail & Related papers (2022-01-04T19:24:29Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
We introduce the CoCoMoT (Computing Conformance Modulo Theories) framework.
First, we show how SAT-based encodings studied in the pure control-flow setting can be lifted to our data-aware case.
Second, we introduce a novel preprocessing technique based on a notion of property-preserving clustering.
arXiv Detail & Related papers (2021-03-18T20:22:50Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.