See What I Mean? CUE: A Cognitive Model of Understanding Explanations
- URL: http://arxiv.org/abs/2506.14775v1
- Date: Fri, 09 May 2025 22:05:20 GMT
- Title: See What I Mean? CUE: A Cognitive Model of Understanding Explanations
- Authors: Tobias Labarta, Nhi Hoang, Katharina Weitz, Wojciech Samek, Sebastian Lapuschkin, Leander Weber,
- Abstract summary: We propose a model for Cognitive Understanding of Explanations, linking explanation properties to cognitive sub-processes.<n>In a study we found comparable task performance but lower confidence/effort for visually impaired users.<n>We contribute: (1) a formalized cognitive model for explanation understanding, (2) an integrated definition of human-centered explanation properties, and (3) empirical evidence motivating accessible, user-tailored XAI.
- Score: 12.230507748153459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning systems increasingly inform critical decisions, the need for human-understandable explanations grows. Current evaluations of Explainable AI (XAI) often prioritize technical fidelity over cognitive accessibility which critically affects users, in particular those with visual impairments. We propose CUE, a model for Cognitive Understanding of Explanations, linking explanation properties to cognitive sub-processes: legibility (perception), readability (comprehension), and interpretability (interpretation). In a study (N=455) testing heatmaps with varying colormaps (BWR, Cividis, Coolwarm), we found comparable task performance but lower confidence/effort for visually impaired users. Unlike expected, these gaps were not mitigated and sometimes worsened by accessibility-focused color maps like Cividis. These results challenge assumptions about perceptual optimization and support the need for adaptive XAI interfaces. They also validate CUE by demonstrating that altering explanation legibility affects understandability. We contribute: (1) a formalized cognitive model for explanation understanding, (2) an integrated definition of human-centered explanation properties, and (3) empirical evidence motivating accessible, user-tailored XAI.
Related papers
- Improving Question Embeddings with Cognitive Representation Optimization for Knowledge Tracing [77.14348157016518]
Research on KT modeling focuses on predicting future student performance based on existing, unupdated records of student learning interactions.<n>We propose a knowledge-tracking cognitive representation optimization (CRO-KT) model that uses dynamic programming algorithms to optimize the structure of cognitive representation.
arXiv Detail & Related papers (2025-04-05T09:32:03Z) - An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems [0.3480973072524161]
Recent research in explainability has focused on explaining the workings of AI models or model explainability.
This thesis seeks to bridge some gaps between model and user-centered explainability.
arXiv Detail & Related papers (2024-10-23T02:03:49Z) - Fool Me Once? Contrasting Textual and Visual Explanations in a Clinical Decision-Support Setting [43.110187812734864]
We evaluate three types of explanations: visual explanations (saliency maps), natural language explanations, and a combination of both modalities.
We find that text-based explanations lead to significant over-reliance, which is alleviated by combining them with saliency maps.
We also observe that the quality of explanations, that is, how much factually correct information they entail, and how much this aligns with AI correctness, significantly impacts the usefulness of the different explanation types.
arXiv Detail & Related papers (2024-10-16T06:43:02Z) - Confident Teacher, Confident Student? A Novel User Study Design for Investigating the Didactic Potential of Explanations and their Impact on Uncertainty [1.0855602842179624]
We investigate the impact of explanations on human performance on a challenging visual task using Explainable Artificial Intelligence (XAI)
We find that users become more accurate in their annotations and demonstrate less uncertainty with AI assistance.
We also find negative effects of explanations: users tend to replicate the model's predictions more often when shown explanations.
arXiv Detail & Related papers (2024-09-10T12:59:50Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
We present a user-centered persona concept to evaluate explainable AI (XAI)
Results show that users' demographics and personality, as well as the type of explanation, impact explanation preferences.
Our insights bring an interactive, human-centered XAI closer to practical application.
arXiv Detail & Related papers (2022-10-07T12:51:27Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - Don't Explain without Verifying Veracity: An Evaluation of Explainable
AI with Video Activity Recognition [24.10997778856368]
This paper explores how explanation veracity affects user performance and agreement in intelligent systems.
We compare variations in explanation veracity for a video review and querying task.
Results suggest that low veracity explanations significantly decrease user performance and agreement.
arXiv Detail & Related papers (2020-05-05T17:06:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.