Topology-Aware and Highly Generalizable Deep Reinforcement Learning for Efficient Retrieval in Multi-Deep Storage Systems
- URL: http://arxiv.org/abs/2506.14787v1
- Date: Tue, 27 May 2025 08:07:38 GMT
- Title: Topology-Aware and Highly Generalizable Deep Reinforcement Learning for Efficient Retrieval in Multi-Deep Storage Systems
- Authors: Funing Li, Yuan Tian, Ruben Noortwyck, Jifeng Zhou, Liming Kuang, Robert Schulz,
- Abstract summary: Multi-deep autonomous vehicle storage and retrieval systems (AVS/RS) present a viable solution for achieving greater storage density.<n>A conventional approach to mitigate this issue involves storing items with homogeneous characteristics in a single lane.<n>We propose a deep reinforcement learning-based framework to address the retrieval problem in multi-deep storage systems with heterogeneous item configurations.
- Score: 3.394084459505348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern industrial and logistics environments, the rapid expansion of fast delivery services has heightened the demand for storage systems that combine high efficiency with increased density. Multi-deep autonomous vehicle storage and retrieval systems (AVS/RS) present a viable solution for achieving greater storage density. However, these systems encounter significant challenges during retrieval operations due to lane blockages. A conventional approach to mitigate this issue involves storing items with homogeneous characteristics in a single lane, but this strategy restricts the flexibility and adaptability of multi-deep storage systems. In this study, we propose a deep reinforcement learning-based framework to address the retrieval problem in multi-deep storage systems with heterogeneous item configurations. Each item is associated with a specific due date, and the objective is to minimize total tardiness. To effectively capture the system's topology, we introduce a graph-based state representation that integrates both item attributes and the local topological structure of the multi-deep warehouse. To process this representation, we design a novel neural network architecture that combines a Graph Neural Network (GNN) with a Transformer model. The GNN encodes topological and item-specific information into embeddings for all directly accessible items, while the Transformer maps these embeddings into global priority assignments. The Transformer's strong generalization capability further allows our approach to be applied to storage systems with diverse layouts. Extensive numerical experiments, including comparisons with heuristic methods, demonstrate the superiority of the proposed neural network architecture and the effectiveness of the trained agent in optimizing retrieval tardiness.
Related papers
- SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis [89.99161034065614]
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios.<n>Existing approaches face critical limitations that lack high-quality training trajectories and suffer from distributional mismatches.<n>This paper introduces SimpleDeepSearcher, a framework that bridges the gap through strategic data engineering rather than complex training paradigms.
arXiv Detail & Related papers (2025-05-22T16:05:02Z) - Instruction-Guided Autoregressive Neural Network Parameter Generation [49.800239140036496]
We propose IGPG, an autoregressive framework that unifies parameter synthesis across diverse tasks and architectures.<n>By autoregressively generating neural network weights' tokens, IGPG ensures inter-layer coherence and enables efficient adaptation across models and datasets.<n>Experiments on multiple datasets demonstrate that IGPG consolidates diverse pretrained models into a single, flexible generative framework.
arXiv Detail & Related papers (2025-04-02T05:50:19Z) - Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data [14.104497777255137]
We introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations.<n>We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies.<n> Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models.
arXiv Detail & Related papers (2025-03-17T05:42:19Z) - Brain Inspired Adaptive Memory Dual-Net for Few-Shot Image Classification [10.824399627455326]
Existing methods aim to tackle this problem by locating and aligning relevant local features.<n>High intra-class variability in real-world images poses significant challenges in locating semantically relevant local regions under few-shot settings.<n>We propose the generalization-optimized Systems Consolidation Adaptive Memory Dual-Network, SCAM-Net.
arXiv Detail & Related papers (2025-03-10T14:42:51Z) - Dual-branch Graph Feature Learning for NLOS Imaging [51.31554007495926]
Non-line-of-sight (NLOS) imaging offers the capability to reveal occluded scenes that are not directly visible.<n>xnet methodology integrates an albedo-focused reconstruction branch dedicated to albedo information recovery and a depth-focused reconstruction branch that extracts geometrical structure.<n>Our method attains the highest level of performance among existing methods across synthetic and real data.
arXiv Detail & Related papers (2025-02-27T01:49:00Z) - Systematic construction of continuous-time neural networks for linear dynamical systems [0.0]
We discuss a systematic approach to constructing neural architectures for modeling a subclass of dynamical systems.
We use a variant of continuous-time neural networks in which the output of each neuron evolves continuously as a solution of a first-order or second-order Ordinary Differential Equation (ODE)
Instead of deriving the network architecture and parameters from data, we propose a gradient-free algorithm to compute sparse architecture and network parameters directly from the given LTI system.
arXiv Detail & Related papers (2024-03-24T16:16:41Z) - MGAS: Multi-Granularity Architecture Search for Trade-Off Between Model
Effectiveness and Efficiency [10.641875933652647]
We introduce multi-granularity architecture search (MGAS) to discover both effective and efficient neural networks.
We learn discretization functions specific to each granularity level to adaptively determine the unit remaining ratio according to the evolving architecture.
Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate that MGAS outperforms other state-of-the-art methods in achieving a better trade-off between model performance and model size.
arXiv Detail & Related papers (2023-10-23T16:32:18Z) - Reinforcement learning for multi-item retrieval in the puzzle-based
storage system [0.694936386455667]
This work develops a deep reinforcement learning algorithm to solve the multi-item retrieval problem in the puzzle-based storage system.
Extensive numerical experiments demonstrate that the reinforcement learning approach can yield high-quality solutions.
A conversion algorithm and a decomposition framework are proposed to handle simultaneous movement and large-scale instances.
arXiv Detail & Related papers (2022-02-05T12:39:21Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
We propose a principled approach, rooted in differentiable neural architecture search, to automatically define branching structures in a multi-task neural network.
We show that our approach consistently finds high-performing branching structures within limited resource budgets.
arXiv Detail & Related papers (2020-08-24T09:49:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.