Brain Inspired Adaptive Memory Dual-Net for Few-Shot Image Classification
- URL: http://arxiv.org/abs/2503.07396v1
- Date: Mon, 10 Mar 2025 14:42:51 GMT
- Title: Brain Inspired Adaptive Memory Dual-Net for Few-Shot Image Classification
- Authors: Kexin Di, Xiuxing Li, Yuyang Han, Ziyu Li, Qing Li, Xia Wu,
- Abstract summary: Existing methods aim to tackle this problem by locating and aligning relevant local features.<n>High intra-class variability in real-world images poses significant challenges in locating semantically relevant local regions under few-shot settings.<n>We propose the generalization-optimized Systems Consolidation Adaptive Memory Dual-Network, SCAM-Net.
- Score: 10.824399627455326
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Few-shot image classification has become a popular research topic for its wide application in real-world scenarios, however the problem of supervision collapse induced by single image-level annotation remains a major challenge. Existing methods aim to tackle this problem by locating and aligning relevant local features. However, the high intra-class variability in real-world images poses significant challenges in locating semantically relevant local regions under few-shot settings. Drawing inspiration from the human's complementary learning system, which excels at rapidly capturing and integrating semantic features from limited examples, we propose the generalization-optimized Systems Consolidation Adaptive Memory Dual-Network, SCAM-Net. This approach simulates the systems consolidation of complementary learning system with an adaptive memory module, which successfully addresses the difficulty of identifying meaningful features in few-shot scenarios. Specifically, we construct a Hippocampus-Neocortex dual-network that consolidates structured representation of each category, the structured representation is then stored and adaptively regulated following the generalization optimization principle in a long-term memory inside Neocortex. Extensive experiments on benchmark datasets show that the proposed model has achieved state-of-the-art performance.
Related papers
- Siamese Transformer Networks for Few-shot Image Classification [9.55588609556447]
Humans exhibit remarkable proficiency in visual classification tasks, accurately recognizing and classifying new images with minimal examples.
Existing few-shot image classification methods often emphasize either global features or local features, with few studies considering the integration of both.
We propose a novel approach based on the Siamese Transformer Network (STN)
Our strategy effectively harnesses the potential of global and local features in few-shot image classification, circumventing the need for complex feature adaptation modules.
arXiv Detail & Related papers (2024-07-16T14:27:23Z) - Prompt-Driven Dynamic Object-Centric Learning for Single Domain
Generalization [61.64304227831361]
Single-domain generalization aims to learn a model from single source domain data to achieve generalized performance on other unseen target domains.
We propose a dynamic object-centric perception network based on prompt learning, aiming to adapt to the variations in image complexity.
arXiv Detail & Related papers (2024-02-28T16:16:51Z) - Coarse-to-Fine: Learning Compact Discriminative Representation for
Single-Stage Image Retrieval [11.696941841000985]
Two-stage methods following retrieve-and-rerank paradigm have achieved excellent performance, but their separate local and global modules are inefficient to real-world applications.
We propose a mechanism which attentively selects prominent local descriptors and infuse fine-grained semantic relations into the global representation.
Our method achieves state-of-the-art single-stage image retrieval performance on benchmarks such as Revisited Oxford and Revisited Paris.
arXiv Detail & Related papers (2023-08-08T03:06:10Z) - Bilevel Fast Scene Adaptation for Low-Light Image Enhancement [50.639332885989255]
Enhancing images in low-light scenes is a challenging but widely concerned task in the computer vision.
Main obstacle lies in the modeling conundrum from distribution discrepancy across different scenes.
We introduce the bilevel paradigm to model the above latent correspondence.
A bilevel learning framework is constructed to endow the scene-irrelevant generality of the encoder towards diverse scenes.
arXiv Detail & Related papers (2023-06-02T08:16:21Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder [11.985083962982909]
This paper proposes a novel image-specific solution, namely non-local variational autoencoder (textttNLVAE)
textttNLVAE is introduced as a self-supervised strategy that reconstructs high-resolution images using disentangled information from the non-local neighbourhood.
Experimental results from seven benchmark datasets demonstrate the effectiveness of the textttNLVAE model.
arXiv Detail & Related papers (2022-04-02T18:43:55Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Joint Self-Attention and Scale-Aggregation for Self-Calibrated Deraining
Network [13.628218953897946]
In this paper, we propose an effective algorithm, called JDNet, to solve the single image deraining problem.
By designing the Scale-Aggregation and Self-Attention modules with Self-Calibrated convolution skillfully, the proposed model has better deraining results.
arXiv Detail & Related papers (2020-08-06T17:04:34Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Contextual Encoder-Decoder Network for Visual Saliency Prediction [42.047816176307066]
We propose an approach based on a convolutional neural network pre-trained on a large-scale image classification task.
We combine the resulting representations with global scene information for accurately predicting visual saliency.
Compared to state of the art approaches, the network is based on a lightweight image classification backbone.
arXiv Detail & Related papers (2019-02-18T16:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.