論文の概要: fastHDMI: Fast Mutual Information Estimation for High-Dimensional Data
- arxiv url: http://arxiv.org/abs/2410.10082v1
- Date: Mon, 14 Oct 2024 01:49:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 03:14:03.580338
- Title: fastHDMI: Fast Mutual Information Estimation for High-Dimensional Data
- Title(参考訳): fastHDMI:高次元データのための高速な相互情報推定
- Authors: Kai Yang, Masoud Asgharian, Nikhil Bhagwat, Jean-Baptiste Poline, Celia M. T. Greenwood,
- Abstract要約: 我々は高次元データセットにおける効率的な変数スクリーニングのために設計されたPythonパッケージであるfastHDMIを紹介した。
この研究は3つの相互情報推定手法のニューロイメージング変数選択への応用を開拓した。
- 参考スコア(独自算出の注目度): 2.9901605297536027
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we introduce fastHDMI, a Python package designed for efficient variable screening in high-dimensional datasets, particularly neuroimaging data. This work pioneers the application of three mutual information estimation methods for neuroimaging variable selection, a novel approach implemented via fastHDMI. These advancements enhance our ability to analyze the complex structures of neuroimaging datasets, providing improved tools for variable selection in high-dimensional spaces. Using the preprocessed ABIDE dataset, we evaluate the performance of these methods through extensive simulations. The tests cover a range of conditions, including linear and nonlinear associations, as well as continuous and binary outcomes. Our results highlight the superiority of the FFTKDE-based mutual information estimation for feature screening in continuous nonlinear outcomes, while binning-based methods outperform others for binary outcomes with nonlinear probability preimages. For linear simulations, both Pearson correlation and FFTKDE-based methods show comparable performance for continuous outcomes, while Pearson excels in binary outcomes with linear probability preimages. A comprehensive case study using the ABIDE dataset further demonstrates fastHDMI's practical utility, showcasing the predictive power of models built from variables selected using our screening techniques. This research affirms the computational efficiency and methodological strength of fastHDMI, significantly enriching the toolkit available for neuroimaging analysis.
- Abstract(参考訳): 本稿では,高次元データセット,特にニューロイメージングデータにおいて,効率的な可変スクリーニングのために設計されたPythonパッケージであるfastHDMIを紹介する。
この研究は、高速HDMIを用いた新しいアプローチであるニューロイメージング可変選択のための3つの相互情報推定手法の適用を開拓した。
これらの進歩は、ニューロイメージングデータセットの複雑な構造を分析する能力を高め、高次元空間における可変選択のための改善されたツールを提供する。
事前処理されたABIDEデータセットを用いて,これらの手法の性能を広範囲なシミュレーションにより評価する。
テストは線形および非線形の関連、連続および二項の結果を含む幅広い条件をカバーしている。
その結果,FFTKDEに基づく相互情報推定では,連続的な非線形な結果に対する特徴検定が優れており,双極性に基づく手法では,非線形な確率予測による2次的な結果よりも優れていた。
線形シミュレーションでは、ピアソン相関法とFFTKDE法の両方が連続的な結果に匹敵する性能を示し、ピアソンは線形確率予測を伴う二項結果に優れる。
ABIDEデータセットを用いた包括的ケーススタディは、我々のスクリーニング技術を用いて選択された変数から構築されたモデルの予測能力を示す、fastHDMIの実用性をさらに実証する。
本研究は、高速HDMIの計算効率と方法論的強度を実証し、ニューロイメージング解析に利用できるツールキットを著しく高めている。
関連論文リスト
- On Machine Learning Approaches for Protein-Ligand Binding Affinity Prediction [2.874893537471256]
本研究では,タンパク質-リガンド結合親和性予測における古典的木モデルと高度なニューラルネットワークの性能を評価する。
2次元モデルと3次元モデルを組み合わせることで、現在の最先端のアプローチを超えて、アクティブな学習結果が向上することを示す。
論文 参考訳(メタデータ) (2024-07-15T13:06:00Z) - Enhancing Multi-Objective Optimization through Machine Learning-Supported Multiphysics Simulation [1.6685829157403116]
本稿では,訓練,自己最適化,自己組織的代理モデルのための方法論的枠組みを提案する。
シュロゲートモデルを比較的少量のデータで訓練し、基礎となるシミュレーションを正確に近似できることを示す。
論文 参考訳(メタデータ) (2023-09-22T20:52:50Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
本稿では,スパース関数オン・ファンクション回帰問題において特徴選択を行うための,新しい,柔軟な,超効率的なアプローチを提案する。
我々はそれをスカラー・オン・ファンクション・フレームワークに拡張する方法を示す。
AOMIC PIOP1による脳MRIデータへの応用について述べる。
論文 参考訳(メタデータ) (2023-03-26T19:41:17Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
多次元関数データのサンプルから連続表現を学習するためのフレームワークを提案する。
本研究では, テンソル分解により, 得られた推定問題を効率的に解けることを示す。
我々は、ニューロイメージングにおける真のデータ応用で締めくくっている。
論文 参考訳(メタデータ) (2021-07-30T16:02:15Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。