DisProtEdit: Exploring Disentangled Representations for Multi-Attribute Protein Editing
- URL: http://arxiv.org/abs/2506.14853v1
- Date: Tue, 17 Jun 2025 06:12:18 GMT
- Title: DisProtEdit: Exploring Disentangled Representations for Multi-Attribute Protein Editing
- Authors: Max Ku, Sun Sun, Hongyu Guo, Wenhu Chen,
- Abstract summary: DisProtEdit is a controllable protein editing framework that leverages dual-channel natural language supervision.<n>DisProtEdit explicitly separates semantic factors, enabling modular and interpretable control.
- Score: 48.819599672346136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce DisProtEdit, a controllable protein editing framework that leverages dual-channel natural language supervision to learn disentangled representations of structural and functional properties. Unlike prior approaches that rely on joint holistic embeddings, DisProtEdit explicitly separates semantic factors, enabling modular and interpretable control. To support this, we construct SwissProtDis, a large-scale multimodal dataset where each protein sequence is paired with two textual descriptions, one for structure and one for function, automatically decomposed using a large language model. DisProtEdit aligns protein and text embeddings using alignment and uniformity objectives, while a disentanglement loss promotes independence between structural and functional semantics. At inference time, protein editing is performed by modifying one or both text inputs and decoding from the updated latent representation. Experiments on protein editing and representation learning benchmarks demonstrate that DisProtEdit performs competitively with existing methods while providing improved interpretability and controllability. On a newly constructed multi-attribute editing benchmark, the model achieves a both-hit success rate of up to 61.7%, highlighting its effectiveness in coordinating simultaneous structural and functional edits.
Related papers
- Image Editing As Programs with Diffusion Models [69.05164729625052]
We introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture.<n>IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations.<n>Our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions.
arXiv Detail & Related papers (2025-06-04T16:57:24Z) - Tuning-Free Image Editing with Fidelity and Editability via Unified Latent Diffusion Model [60.82962950960996]
We introduce UnifyEdit, a tuning-free method that performs diffusion latent optimization.<n>We develop two attention-based constraints: a self-attention (SA) preservation constraint for structural fidelity, and a cross-attention (CA) alignment constraint to enhance text alignment.<n>Our approach achieves a robust balance between structure preservation and text alignment across various editing tasks, outperforming other state-of-the-art methods.
arXiv Detail & Related papers (2025-04-08T01:02:50Z) - FineEdit: Unlock Instruction-Based Text Editing for LLMs [9.795246551841586]
FineEdit is a specialized editing model explicitly trained for accurate, context-aware text modifications.<n>FineEdit outperforms state-of-the-art models on single-turn edits, up to 30% over Llama-3.2-3B, and exceeding Mistral-7B-OpenOrca performance by over 40% on direct editing tasks.
arXiv Detail & Related papers (2025-02-19T01:41:44Z) - MAKIMA: Tuning-free Multi-Attribute Open-domain Video Editing via Mask-Guided Attention Modulation [55.101611012677616]
Diffusion-based text-to-image (T2I) models have demonstrated remarkable results in global video editing tasks.<n>We present MAKIMA, a tuning-free MAE framework built upon pretrained T2I models for open-domain video editing.
arXiv Detail & Related papers (2024-12-28T02:36:51Z) - Task-Oriented Diffusion Inversion for High-Fidelity Text-based Editing [60.730661748555214]
We introduce textbfTask-textbfOriented textbfDiffusion textbfInversion (textbfTODInv), a novel framework that inverts and edits real images tailored to specific editing tasks.
ToDInv seamlessly integrates inversion and editing through reciprocal optimization, ensuring both high fidelity and precise editability.
arXiv Detail & Related papers (2024-08-23T22:16:34Z) - An Item is Worth a Prompt: Versatile Image Editing with Disentangled Control [21.624984690721842]
D-Edit is a framework to disentangle the comprehensive image-prompt interaction into several item-prompt interactions.<n>It is based on pretrained diffusion models with cross-attention layers disentangled and adopts a two-step optimization to build item-prompt associations.<n>We demonstrate state-of-the-art results in four types of editing operations including image-based, text-based, mask-based editing, and item removal.
arXiv Detail & Related papers (2024-03-07T20:06:29Z) - Text Revision by On-the-Fly Representation Optimization [76.11035270753757]
Current state-of-the-art methods formulate these tasks as sequence-to-sequence learning problems.
We present an iterative in-place editing approach for text revision, which requires no parallel data.
It achieves competitive and even better performance than state-of-the-art supervised methods on text simplification.
arXiv Detail & Related papers (2022-04-15T07:38:08Z) - Towards Disentangling Latent Space for Unsupervised Semantic Face
Editing [21.190437168936764]
Supervised attribute editing requires annotated training data which is difficult to obtain and limits the editable attributes to those with labels.
In this paper, we present a new technique termed Structure-Texture Independent Architecture with Weight Decomposition and Orthogonal Regularization (STIA-WO) to disentangle the latent space for unsupervised semantic face editing.
arXiv Detail & Related papers (2020-11-05T03:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.