RAST: Reasoning Activation in LLMs via Small-model Transfer
- URL: http://arxiv.org/abs/2506.15710v1
- Date: Fri, 30 May 2025 17:57:08 GMT
- Title: RAST: Reasoning Activation in LLMs via Small-model Transfer
- Authors: Siru Ouyang, Xinyu Zhu, Zilin Xiao, Minhao Jiang, Yu Meng, Jiawei Han,
- Abstract summary: Reinforcement learning (RL) has become a powerful approach for improving the reasoning capabilities of large language models (LLMs)<n>Applying RL at scale remains intimidatingly resource-intensive, requiring multiple model copies and extensive GPU workloads.<n>We propose RAST, a simple yet effective method that transfers reasoning behaviors by injecting RL-induced probability adjustments from a small RL-trained model into larger models.
- Score: 33.32587030836428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has become a powerful approach for improving the reasoning capabilities of large language models (LLMs), as evidenced by recent successes such as OpenAI's o1 and Deepseek-R1. However, applying RL at scale remains intimidatingly resource-intensive, requiring multiple model copies and extensive GPU workloads. On the other hand, while being powerful, recent studies suggest that RL does not fundamentally endow models with new knowledge; rather, it primarily reshapes the model's output distribution to activate reasoning capabilities latent in the base model. Building on this insight, we hypothesize that the changes in output probabilities induced by RL are largely model-size invariant, opening the door to a more efficient paradigm: training a small model with RL and transferring its induced probability shifts to larger base models. To verify our hypothesis, we conduct a token-level analysis of decoding trajectories and find high alignment in RL-induced output distributions across model scales, validating our hypothesis. Motivated by this, we propose RAST, a simple yet effective method that transfers reasoning behaviors by injecting RL-induced probability adjustments from a small RL-trained model into larger models. Experiments across multiple mathematical reasoning benchmarks show that RAST substantially and consistently enhances the reasoning capabilities of base models while requiring significantly lower GPU memory than direct RL training, sometimes even yielding better performance than the RL-trained counterparts. Our findings offer new insights into the nature of RL-driven reasoning and practical strategies for scaling its benefits without incurring its full computational cost. The project page of RAST is available at https://ozyyshr.github.io/RAST/.
Related papers
- Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning [82.43575191712726]
We introduce a fine-grained analytic framework to dissect the impact ofReinforcement learning on reasoning.<n>Our framework specifically investigates key elements that have been hypothesized to benefit from RL training.
arXiv Detail & Related papers (2025-06-05T07:53:59Z) - ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models [89.37819814048288]
We introduce ProRL, a novel training methodology that incorporates KL divergence control, reference policy, and a diverse suite of tasks.<n>Our empirical analysis reveals that RL-trained models consistently outperform base resetting models across a wide range of pass@k evaluations.<n>These findings offer new insights into the conditions under which RL meaningfully expands reasoning boundaries in language models.
arXiv Detail & Related papers (2025-05-30T17:59:01Z) - Scaling Offline RL via Efficient and Expressive Shortcut Models [13.050231036248338]
offline reinforcement learning (RL) remains challenging due to the iterative nature of their noise sampling processes.<n>We introduce Scalable Offline Reinforcement Learning (SORL), a new offline RL algorithm that leverages shortcut models to scale both training and inference.<n>We demonstrate that SORL achieves strong performance across a range of offline RL tasks and exhibits positive scaling behavior with increased test-time compute.
arXiv Detail & Related papers (2025-05-28T20:59:22Z) - AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning [50.02117478165099]
We show that large-scale reinforcement learning can significantly enhance the reasoning capabilities of strong, small- and mid-sized models.<n>We propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts.
arXiv Detail & Related papers (2025-05-22T08:50:47Z) - Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model? [67.30809748319486]
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs)<n>This study critically examines the current state of RLVR.<n>We find that the current training setup does not elicit fundamentally new reasoning patterns.
arXiv Detail & Related papers (2025-04-18T17:59:56Z) - Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models.<n>We present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch.
arXiv Detail & Related papers (2025-04-10T17:15:53Z) - An Empirical Study on Eliciting and Improving R1-like Reasoning Models [90.52239241349504]
scaling RL training has become a central technique for implementing such reasoning models.<n>We demonstrate that our RL training approach consistently improves the Qwen2.5-32B base models.<n>We also explore the use of tool manipulation, finding that it significantly boosts the reasoning performance of large reasoning models.
arXiv Detail & Related papers (2025-03-06T15:34:27Z) - Enhancing Analogical Reasoning in the Abstraction and Reasoning Corpus via Model-Based RL [6.143939145442195]
We show that model-based reinforcement learning is a suitable approach for the task of analogical reasoning.
We compare DreamerV3, a model-based RL method, with Proximal Policy Optimization, a model-free RL method.
Our results indicate that model-based RL not only outperforms model-free RL in learning and generalizing from single tasks but also shows significant advantages in reasoning across similar tasks.
arXiv Detail & Related papers (2024-08-27T08:15:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.