HEAL: An Empirical Study on Hallucinations in Embodied Agents Driven by Large Language Models
- URL: http://arxiv.org/abs/2506.15065v1
- Date: Wed, 18 Jun 2025 02:13:41 GMT
- Title: HEAL: An Empirical Study on Hallucinations in Embodied Agents Driven by Large Language Models
- Authors: Trishna Chakraborty, Udita Ghosh, Xiaopan Zhang, Fahim Faisal Niloy, Yue Dong, Jiachen Li, Amit K. Roy-Chowdhury, Chengyu Song,
- Abstract summary: We present the first systematic study of hallucinations in large language models performing long-horizon tasks under scene-task inconsistencies.<n>Our goal is to understand to what extent hallucinations occur, what types of inconsistencies trigger them, and how current models respond.
- Score: 30.596530112268848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly being adopted as the cognitive core of embodied agents. However, inherited hallucinations, which stem from failures to ground user instructions in the observed physical environment, can lead to navigation errors, such as searching for a refrigerator that does not exist. In this paper, we present the first systematic study of hallucinations in LLM-based embodied agents performing long-horizon tasks under scene-task inconsistencies. Our goal is to understand to what extent hallucinations occur, what types of inconsistencies trigger them, and how current models respond. To achieve these goals, we construct a hallucination probing set by building on an existing benchmark, capable of inducing hallucination rates up to 40x higher than base prompts. Evaluating 12 models across two simulation environments, we find that while models exhibit reasoning, they fail to resolve scene-task inconsistencies-highlighting fundamental limitations in handling infeasible tasks. We also provide actionable insights on ideal model behavior for each scenario, offering guidance for developing more robust and reliable planning strategies.
Related papers
- MIRAGE-Bench: LLM Agent is Hallucinating and Where to Find Them [52.764019220214344]
Hallucinations pose critical risks for large language model (LLM)-based agents.<n>We present MIRAGE-Bench, the first unified benchmark for eliciting and evaluating hallucinations in interactive environments.
arXiv Detail & Related papers (2025-07-28T17:38:29Z) - MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM [58.2298313720146]
Multimodal hallucinations are multi-sourced and arise from diverse causes.<n>Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations.
arXiv Detail & Related papers (2025-05-30T05:54:36Z) - HalluLens: LLM Hallucination Benchmark [49.170128733508335]
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination"<n>This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks.
arXiv Detail & Related papers (2025-04-24T13:40:27Z) - Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling [67.14942827452161]
Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations.<n>In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification.
arXiv Detail & Related papers (2025-04-17T17:59:22Z) - Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy [53.07517728420411]
We introduce the first instruction database specifically focused on hallucinations in low-level vision tasks.<n>We propose the Self-Awareness Failure Elimination (SAFEQA) model to improve the perception and comprehension abilities of the model in low-level vision tasks.<n>We conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations.
arXiv Detail & Related papers (2025-03-26T16:05:01Z) - Delusions of Large Language Models [62.43923767408462]
Large Language Models often generate factually incorrect but plausible outputs, known as hallucinations.<n>We identify a more insidious phenomenon, LLM delusion, defined as high belief hallucinations, incorrect outputs with abnormally high confidence, making them harder to detect and mitigate.
arXiv Detail & Related papers (2025-03-09T17:59:16Z) - Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models [57.58426038241812]
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in complex multimodal tasks.<n>These models still suffer from hallucinations when required to implicitly recognize or infer diverse visual entities from images.<n>We propose a novel visual question answering (VQA) benchmark that employs contextual reasoning prompts as hallucination attacks.
arXiv Detail & Related papers (2024-12-29T23:56:01Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.<n>We generate a small-size hallucination annotation dataset by proprietary models.<n>Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.