SecFwT: Efficient Privacy-Preserving Fine-Tuning of Large Language Models Using Forward-Only Passes
- URL: http://arxiv.org/abs/2506.15307v1
- Date: Wed, 18 Jun 2025 09:36:57 GMT
- Title: SecFwT: Efficient Privacy-Preserving Fine-Tuning of Large Language Models Using Forward-Only Passes
- Authors: Jinglong Luo, Zhuo Zhang, Yehong Zhang, Shiyu Liu, Ye Dong, Xun Zhou, Hui Wang, Yue Yu, Zenglin Xu,
- Abstract summary: Large language models (LLMs) have transformed numerous fields, yet their adaptation to specialized tasks in privacy-sensitive domains, such as healthcare and finance, is constrained by the scarcity of accessible training data due to stringent privacy requirements.<n>Secure multi-party computation (MPC)-based privacy-preserving machine learning offers a powerful approach to protect both model parameters and user data.<n>We propose SecFwT, the first MPC-based framework designed for efficient, privacy-preserving LLM fine-tuning.
- Score: 37.63828228378461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have transformed numerous fields, yet their adaptation to specialized tasks in privacy-sensitive domains, such as healthcare and finance, is constrained by the scarcity of accessible training data due to stringent privacy requirements. Secure multi-party computation (MPC)-based privacy-preserving machine learning offers a powerful approach to protect both model parameters and user data, but its application to LLMs has been largely limited to inference, as fine-tuning introduces significant computational challenges, particularly in privacy-preserving backward propagation and optimizer operations. This paper identifies two primary obstacles to MPC-based privacy-preserving fine-tuning of LLMs: (1) the substantial computational overhead of backward and optimizer processes, and (2) the inefficiency of softmax-based attention mechanisms in MPC settings. To address these challenges, we propose SecFwT, the first MPC-based framework designed for efficient, privacy-preserving LLM fine-tuning. SecFwT introduces a forward-only tuning paradigm to eliminate backward and optimizer computations and employs MPC-friendly Random Feature Attention to approximate softmax attention, significantly reducing costly non-linear operations and computational complexity. Experimental results demonstrate that SecFwT delivers substantial improvements in efficiency and privacy preservation, enabling scalable and secure fine-tuning of LLMs for privacy-critical applications.
Related papers
- SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks [17.77094760401298]
We study the vulnerability of fine-tuned large language models to membership inference attacks (MIAs)<n>We propose SOFT, a novel defense technique that mitigates privacy leakage by leveraging influential data selection with an adjustable parameter to balance utility preservation and privacy protection.
arXiv Detail & Related papers (2025-06-12T07:23:56Z) - FedShield-LLM: A Secure and Scalable Federated Fine-Tuned Large Language Model [0.48342038441006796]
Federated Learning (FL) offers a decentralized framework for training and fine-tuning Large Language Models (LLMs)<n>FL addresses privacy and security concerns while navigating challenges associated with the substantial computational demands of LLMs.<n>We propose a novel method, FedShield-LLM, that uses pruning with Fully Homomorphic Encryption (FHE) for Low-Rank Adaptation (LoRA) parameters.
arXiv Detail & Related papers (2025-06-06T00:05:05Z) - PWC-MoE: Privacy-Aware Wireless Collaborative Mixture of Experts [59.5243730853157]
Large language models (LLMs) hosted on cloud servers alleviate the computational and storage burdens on local devices but raise privacy concerns.<n>Small language models (SLMs) running locally enhance privacy but suffer from limited performance on complex tasks.<n>We propose a privacy-aware wireless collaborative mixture of experts (PWC-MoE) framework to balance computational cost, performance, and privacy protection under bandwidth constraints.
arXiv Detail & Related papers (2025-05-13T16:27:07Z) - Linear-Time User-Level DP-SCO via Robust Statistics [55.350093142673316]
User-level differentially private convex optimization (DP-SCO) has garnered significant attention due to the importance of safeguarding user privacy in machine learning applications.<n>Current methods, such as those based on differentially private gradient descent (DP-SGD), often struggle with high noise accumulation and suboptimal utility.<n>We introduce a novel linear-time algorithm that leverages robust statistics, specifically the median and trimmed mean, to overcome these challenges.
arXiv Detail & Related papers (2025-02-13T02:05:45Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.<n>This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Enhancing LLMs with Smart Preprocessing for EHR Analysis [3.5839042822277585]
Large Language Models (LLMs) have demonstrated remarkable proficiency in natural language processing.<n>This paper introduces a compact LLM framework optimized for local deployment in environments with stringent privacy requirements.
arXiv Detail & Related papers (2024-12-03T22:06:55Z) - Efficient and Private: Memorisation under differentially private parameter-efficient fine-tuning in language models [2.3281513013731145]
Fine-tuning large language models (LLMs) for specific tasks introduces privacy risks, as models may inadvertently memorise and leak sensitive training data.
Differential Privacy (DP) offers a solution to mitigate these risks, but introduces significant computational and performance trade-offs.
We show that PEFT methods achieve comparable performance to standard fine-tuning while requiring fewer parameters and significantly reducing privacy leakage.
arXiv Detail & Related papers (2024-11-24T13:17:36Z) - FedDTPT: Federated Discrete and Transferable Prompt Tuning for Black-Box Large Language Models [14.719919025265224]
Fine-tuning large language models (LLMs) with data from specific scenarios poses privacy leakage risks.
We propose for the first time a federated discrete and transferable prompt tuning, namely FedDTPT, for black-box large language models.
Our approach achieves higher accuracy, reduced communication overhead, and robustness to non-iid data in a black-box setting.
arXiv Detail & Related papers (2024-11-01T19:19:23Z) - A Federated Framework for LLM-based Recommendation [65.12855401912948]
Large Language Models (LLMs) have empowered generative recommendation systems through fine-tuning user behavior data.<n> utilizing the user data may pose significant privacy risks, potentially leading to ethical dilemmas and violations of data protection regulations.<n>To address the privacy concerns, Federated Learning for Recommendation (Fed4Rec) has been identified as a promising solution.
arXiv Detail & Related papers (2024-02-15T14:09:28Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
This thesis focuses on designing efficient MPC frameworks for 2, 3 and 4 parties, with at most one corruption and supports ring structures.
We propose two variants for each of our frameworks, with one variant aiming to minimise the execution time while the other focuses on the monetary cost.
arXiv Detail & Related papers (2021-12-26T09:25:32Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.