J3DAI: A tiny DNN-Based Edge AI Accelerator for 3D-Stacked CMOS Image Sensor
- URL: http://arxiv.org/abs/2506.15316v1
- Date: Wed, 18 Jun 2025 09:46:02 GMT
- Title: J3DAI: A tiny DNN-Based Edge AI Accelerator for 3D-Stacked CMOS Image Sensor
- Authors: Benoit Tain, Raphael Millet, Romain Lemaire, Michal Szczepanski, Laurent Alacoque, Emmanuel Pluchart, Sylvain Choisnet, Rohit Prasad, Jerome Chossat, Pascal Pierunek, Pascal Vivet, Sebastien Thuries,
- Abstract summary: This paper presents J3DAI, a tiny deep neural network-based hardware accelerator for a 3-layer 3D-stacked CMOS image sensor.<n>To support hardware, we utilized the Aidge comprehensive software framework, which enables the programming of both the host processor and the DNN accelerator.
- Score: 0.7437459197111806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents J3DAI, a tiny deep neural network-based hardware accelerator for a 3-layer 3D-stacked CMOS image sensor featuring an artificial intelligence (AI) chip integrating a Deep Neural Network (DNN)-based accelerator. The DNN accelerator is designed to efficiently perform neural network tasks such as image classification and segmentation. This paper focuses on the digital system of J3DAI, highlighting its Performance-Power-Area (PPA) characteristics and showcasing advanced edge AI capabilities on a CMOS image sensor. To support hardware, we utilized the Aidge comprehensive software framework, which enables the programming of both the host processor and the DNN accelerator. Aidge supports post-training quantization, significantly reducing memory footprint and computational complexity, making it crucial for deploying models on resource-constrained hardware like J3DAI. Our experimental results demonstrate the versatility and efficiency of this innovative design in the field of edge AI, showcasing its potential to handle both simple and computationally intensive tasks. Future work will focus on further optimizing the architecture and exploring new applications to fully leverage the capabilities of J3DAI. As edge AI continues to grow in importance, innovations like J3DAI will play a crucial role in enabling real-time, low-latency, and energy-efficient AI processing at the edge.
Related papers
- Hardware-Efficient Photonic Tensor Core: Accelerating Deep Neural Networks with Structured Compression [15.665630650382226]
We introduce a block-circulant photonic tensor core for a structure-compressed optical neural network (StrC-ONN) architecture.<n>This work explores a new pathway toward practical and scalable ONNs, highlighting a promising route to address future computational efficiency challenges.
arXiv Detail & Related papers (2025-02-01T17:03:45Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - TeMPO: Efficient Time-Multiplexed Dynamic Photonic Tensor Core for Edge
AI with Compact Slow-Light Electro-Optic Modulator [44.74560543672329]
We present a time-multiplexed dynamic photonic tensor accelerator, dubbed TeMPO, with cross-layer device/circuit/architecture customization.
We achieve a 368.6 TOPS peak performance, 22.3 TOPS/W energy efficiency, and 1.2 TOPS/mm$2$ compute density.
This work signifies the power of cross-layer co-design and domain-specific customization, paving the way for future electronic-photonic accelerators.
arXiv Detail & Related papers (2024-02-12T03:40:32Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Green Edge AI: A Contemporary Survey [46.11332733210337]
The transformative power of AI is derived from the utilization of deep neural networks (DNNs)
Deep learning (DL) is increasingly being transitioned to wireless edge networks in proximity to end-user devices (EUDs)
Despite its potential, edge AI faces substantial challenges, mostly due to the dichotomy between the resource limitations of wireless edge networks and the resource-intensive nature of DL.
arXiv Detail & Related papers (2023-12-01T04:04:37Z) - Fast GraspNeXt: A Fast Self-Attention Neural Network Architecture for
Multi-task Learning in Computer Vision Tasks for Robotic Grasping on the Edge [80.88063189896718]
High architectural and computational complexity can result in poor suitability for deployment on embedded devices.
Fast GraspNeXt is a fast self-attention neural network architecture tailored for embedded multi-task learning in computer vision tasks for robotic grasping.
arXiv Detail & Related papers (2023-04-21T18:07:14Z) - Data-Model-Circuit Tri-Design for Ultra-Light Video Intelligence on Edge
Devices [90.30316433184414]
We propose a data-model-hardware tri-design framework for high- throughput, low-cost, and high-accuracy MOT on HD video stream.
Compared to the state-of-the-art MOT baseline, our tri-design approach can achieve 12.5x latency reduction, 20.9x effective frame rate improvement, 5.83x lower power, and 9.78x better energy efficiency, without much accuracy drop.
arXiv Detail & Related papers (2022-10-16T16:21:40Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Silicon photonic subspace neural chip for hardware-efficient deep
learning [11.374005508708995]
optical neural network (ONN) is a promising candidate for next-generation neurocomputing.
We devise a hardware-efficient photonic subspace neural network architecture.
We experimentally demonstrate our PSNN on a butterfly-style programmable silicon photonic integrated circuit.
arXiv Detail & Related papers (2021-11-11T06:34:05Z) - L2ight: Enabling On-Chip Learning for Optical Neural Networks via
Efficient in-situ Subspace Optimization [10.005026783940682]
Silicon-photonics-based optical neural network (ONN) is a promising hardware platform that could represent a paradigm shift in efficient AI.
In this work, we propose a closed-loop ONN on-chip learning framework L2ight to enable scalable ONN mapping and efficient in-situ learning.
arXiv Detail & Related papers (2021-10-27T22:53:47Z) - 3U-EdgeAI: Ultra-Low Memory Training, Ultra-Low BitwidthQuantization,
and Ultra-Low Latency Acceleration [8.419854797930668]
Deep neural network (DNN) based AI applications on the edge require both low-cost computing platforms and high-quality services.
This paper emphasizes the importance of training, quantization and accelerator design, and calls for more research breakthroughs in the area for AI on the edge.
arXiv Detail & Related papers (2021-05-11T03:22:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.