Towards Explainable Indoor Localization: Interpreting Neural Network Learning on Wi-Fi Fingerprints Using Logic Gates
- URL: http://arxiv.org/abs/2506.15559v1
- Date: Wed, 18 Jun 2025 15:34:41 GMT
- Title: Towards Explainable Indoor Localization: Interpreting Neural Network Learning on Wi-Fi Fingerprints Using Logic Gates
- Authors: Danish Gufran, Sudeep Pasricha,
- Abstract summary: We introduce LogNet, a novel logic gate-based framework designed to interpret and enhance DL-based indoor localization.<n>We show that LogNet improves performance-achieving up to 1.1x to 2.8x lower localization error, 3.4x to 43.3x smaller model size, and 1.5x to 3.6x lower latency compared to prior DL-based models.
- Score: 3.3379026542599934
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Indoor localization using deep learning (DL) has demonstrated strong accuracy in mapping Wi-Fi RSS fingerprints to physical locations; however, most existing DL frameworks function as black-box models, offering limited insight into how predictions are made or how models respond to real-world noise over time. This lack of interpretability hampers our ability to understand the impact of temporal variations - caused by environmental dynamics - and to adapt models for long-term reliability. To address this, we introduce LogNet, a novel logic gate-based framework designed to interpret and enhance DL-based indoor localization. LogNet enables transparent reasoning by identifying which access points (APs) are most influential for each reference point (RP) and reveals how environmental noise disrupts DL-driven localization decisions. This interpretability allows us to trace and diagnose model failures and adapt DL systems for more stable long-term deployments. Evaluations across multiple real-world building floorplans and over two years of temporal variation show that LogNet not only interprets the internal behavior of DL models but also improves performance-achieving up to 1.1x to 2.8x lower localization error, 3.4x to 43.3x smaller model size, and 1.5x to 3.6x lower latency compared to prior DL-based models.
Related papers
- Model Hemorrhage and the Robustness Limits of Large Language Models [119.46442117681147]
Large language models (LLMs) demonstrate strong performance across natural language processing tasks, yet undergo significant performance degradation when modified for deployment.<n>We define this phenomenon as model hemorrhage - performance decline caused by parameter alterations and architectural changes.
arXiv Detail & Related papers (2025-03-31T10:16:03Z) - SENTINEL: Securing Indoor Localization against Adversarial Attacks with Capsule Neural Networks [2.7186493234782527]
We present SENTINEL, a novel embedded machine learning framework to bolster the resilience of indoor localization solutions against adversarial attacks.
We also introduce RSSRogueLoc, a dataset capturing the effects of rogue APs from several real-world indoor environments.
arXiv Detail & Related papers (2024-07-14T21:40:12Z) - Investigating Training Strategies and Model Robustness of Low-Rank
Adaptation for Language Modeling in Speech Recognition [27.515920408920216]
Low-rank adaptation (LoRA) with frozen pretrained language models (PLMs) is a resource-efficient modeling approach for memory-constrained hardware.
In this study, we explore how to enhance model performance by introducing various LoRA training strategies.
To further characterize the stability of LoRA-based second-pass speech recognition models, we examine against input perturbations.
arXiv Detail & Related papers (2024-01-19T01:30:16Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
arXiv Detail & Related papers (2023-08-03T23:55:17Z) - FLARE: Detection and Mitigation of Concept Drift for Federated Learning
based IoT Deployments [2.7776688429637466]
FLARE is a lightweight dual-scheduler FL framework that conditionally transfers training data and deploys models between edge and sensor endpoints.
We show that FLARE can significantly reduce the amount of data exchanged between edge and sensor nodes compared to fixed-interval scheduling methods.
It can successfully detect concept drift reactively with at least a 16x reduction in latency.
arXiv Detail & Related papers (2023-05-15T10:09:07Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - Change Detection for Local Explainability in Evolving Data Streams [72.4816340552763]
Local feature attribution methods have become a popular technique for post-hoc and model-agnostic explanations.
It is often unclear how local attributions behave in realistic, constantly evolving settings such as streaming and online applications.
We present CDLEEDS, a flexible and model-agnostic framework for detecting local change and concept drift.
arXiv Detail & Related papers (2022-09-06T18:38:34Z) - PointFix: Learning to Fix Domain Bias for Robust Online Stereo
Adaptation [67.41325356479229]
We propose to incorporate an auxiliary point-selective network into a meta-learning framework, called PointFix.
In a nutshell, our auxiliary network learns to fix local variants intensively by effectively back-propagating local information through the meta-gradient.
This network is model-agnostic, so can be used in any kind of architectures in a plug-and-play manner.
arXiv Detail & Related papers (2022-07-27T07:48:29Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
Federated learning (FedL) has emerged as a popular technique for distributing model training over a set of wireless devices.
We develop parallel successive learning (PSL), which expands the FedL architecture along three dimensions.
Our analysis sheds light on the notion of cold vs. warmed up models, and model inertia in distributed machine learning.
arXiv Detail & Related papers (2022-02-07T05:11:01Z) - Distribution-sensitive Information Retention for Accurate Binary Neural
Network [49.971345958676196]
We present a novel Distribution-sensitive Information Retention Network (DIR-Net) to retain the information of the forward activations and backward gradients.
Our DIR-Net consistently outperforms the SOTA binarization approaches under mainstream and compact architectures.
We conduct our DIR-Net on real-world resource-limited devices which achieves 11.1 times storage saving and 5.4 times speedup.
arXiv Detail & Related papers (2021-09-25T10:59:39Z) - Online Dynamic Window (ODW) Assisted Two-stage LSTM Frameworks for
Indoor Localization [8.667550264279166]
Online Dynamic Window (ODW)-assisted two-stage Long Short Term Memory (LSTM) localization framework developed.
Three ODWs are proposed, where the first model uses a Natural Language Processing (NLP)-inspired Dynamic Window (DW) approach.
Second framework is developed based on a Signal Processing Dynamic Windowing (SP-DW) approach to further reduce the required processing time of the two-stage LSTM-based model.
Third ODW, referred to as the SP-NLP, combines the first two windowing mechanisms to further improve the overall achieved accuracy.
arXiv Detail & Related papers (2021-09-01T00:22:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.