論文の概要: Task-Agnostic Experts Composition for Continual Learning
- arxiv url: http://arxiv.org/abs/2506.15566v1
- Date: Wed, 18 Jun 2025 15:43:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.723732
- Title: Task-Agnostic Experts Composition for Continual Learning
- Title(参考訳): 連続学習のためのタスク非依存エキスパート構成
- Authors: Luigi Quarantiello, Andrea Cossu, Vincenzo Lomonaco,
- Abstract要約: 本稿では,0ショットのエキスパートモデルの集合をアンサンブルすることで構成的アプローチを提案する。
本稿では,本手法がベースラインアルゴリズムよりもはるかに高い精度で実現可能であることを示す。
- 参考スコア(独自算出の注目度): 8.10981559903269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compositionality is one of the fundamental abilities of the human reasoning process, that allows to decompose a complex problem into simpler elements. Such property is crucial also for neural networks, especially when aiming for a more efficient and sustainable AI framework. We propose a compositional approach by ensembling zero-shot a set of expert models, assessing our methodology using a challenging benchmark, designed to test compositionality capabilities. We show that our Expert Composition method is able to achieve a much higher accuracy than baseline algorithms while requiring less computational resources, hence being more efficient.
- Abstract(参考訳): 構成性は人間の推論過程の基本的な能力の1つであり、複雑な問題をより単純な要素に分解することができる。
このような性質は、特により効率的で持続可能なAIフレームワークを目指す場合、ニューラルネットワークにも不可欠である。
本稿では,ゼロショットを専門家モデルの集合に組み込むことによって構成的アプローチを提案する。
提案手法は,計算資源の削減を図りながら,ベースラインアルゴリズムよりもはるかに高い精度を達成できることを示す。
関連論文リスト
- Sparse Mixture-of-Experts for Compositional Generalization: Empirical Evidence and Theoretical Foundations of Optimal Sparsity [89.81738321188391]
本研究では,SMoEモデルにおけるタスク複雑性と最適空間の関係について検討する。
最適な間隔は、最小限のアクティベーション(1-2専門家)とフルアクティベーションの間にあり、その正確な数はタスクの複雑さに比例する。
論文 参考訳(メタデータ) (2024-10-17T18:40:48Z) - A Human-Centered Approach for Improving Supervised Learning [0.44378250612683995]
本稿では、パフォーマンス、時間、リソースの制約のバランスをとる方法を示す。
この研究のもう1つの目標は、人間中心のアプローチを用いて、エンサンブルスをより説明しやすく、理解しやすくすることである。
論文 参考訳(メタデータ) (2024-10-14T10:27:14Z) - Component-based Sketching for Deep ReLU Nets [55.404661149594375]
各種タスクのためのディープネットコンポーネントに基づくスケッチ手法を開発した。
我々はディープネットトレーニングを線形経験的リスク最小化問題に変換する。
提案したコンポーネントベーススケッチは飽和関数の近似においてほぼ最適であることを示す。
論文 参考訳(メタデータ) (2024-09-21T15:30:43Z) - Neural Algorithmic Reasoning for Combinatorial Optimisation [20.36694807847833]
ニューラル推論の最近の進歩を活用して,CO問題の学習を改善することを提案する。
私たちは、COインスタンスでトレーニングする前に、関連するアルゴリズムでニューラルネットワークを事前トレーニングすることを提案します。
以上の結果から,この学習装置を用いることで,非アルゴリズム的情報深層学習モデルよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-05-18T13:59:02Z) - Divide & Conquer Imitation Learning [75.31752559017978]
模倣学習は学習プロセスをブートストラップするための強力なアプローチである。
本稿では,専門的軌道の状態から複雑なロボットタスクを模倣する新しいアルゴリズムを提案する。
提案手法は,非ホロノミックナビゲーションタスクを模倣し,非常に高いサンプル効率で複雑なロボット操作タスクにスケールすることを示す。
論文 参考訳(メタデータ) (2022-04-15T09:56:50Z) - Human-Algorithm Collaboration: Achieving Complementarity and Avoiding
Unfairness [92.26039686430204]
慎重に設計されたシステムであっても、補完的な性能はあり得ないことを示す。
まず,簡単な人間アルゴリズムをモデル化するための理論的枠組みを提案する。
次に、このモデルを用いて相補性が不可能な条件を証明する。
論文 参考訳(メタデータ) (2022-02-17T18:44:41Z) - A Simple and Efficient Sampling-based Algorithm for General Reachability
Analysis [32.488975902387395]
汎用リーチビリティ分析は、ニューラルネットワークの検証から動的システムの安全性分析まで、アプリケーションにおいて非常に難しい問題である。
入力をサンプリングし、真の到達可能なセットで画像を評価し、その$epsilon$padded convex hullをセット推定器として利用することにより、このアルゴリズムは一般的な問題設定に適用でき、実装も簡単である。
この分析はアルゴリズム設計に、高い確率で$epsilon$-close reachable set approximationを得るよう通知する。
ニューラルネットワーク検証タスクでは、このアプローチが以前の作業よりも正確で、はるかに高速であることを示す。
論文 参考訳(メタデータ) (2021-12-10T18:56:16Z) - Complex Skill Acquisition Through Simple Skill Imitation Learning [0.0]
本稿では,ニューラルネットワークのポリシーをシンプルで学習しやすいスキルで学習するアルゴリズムを提案する。
複雑なタスクが単純なサブタスクの同時(そしておそらくはシーケンシャルな)組み合わせである場合に焦点を当てる。
我々のアルゴリズムは、トレーニング速度と全体的な性能において、最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2020-07-20T17:06:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。