Federated Learning for MRI-based BrainAGE: a multicenter study on post-stroke functional outcome prediction
- URL: http://arxiv.org/abs/2506.15626v2
- Date: Thu, 19 Jun 2025 10:16:18 GMT
- Title: Federated Learning for MRI-based BrainAGE: a multicenter study on post-stroke functional outcome prediction
- Authors: Vincent Roca, Marc Tommasi, Paul Andrey, Aurélien Bellet, Markus D. Schirmer, Hilde Henon, Laurent Puy, Julien Ramon, Grégory Kuchcinski, Martin Bretzner, Renaud Lopes,
- Abstract summary: Brain-predicted age difference (BrainAGE) is a biomarker reflecting brain health.<n>Training robust BrainAGE models requires large datasets, often restricted by privacy concerns.<n>We used FLAIR brain images from 1674 stroke patients across 16 hospital centers.
- Score: 9.27749092755817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: $\textbf{Objective:}$ Brain-predicted age difference (BrainAGE) is a neuroimaging biomarker reflecting brain health. However, training robust BrainAGE models requires large datasets, often restricted by privacy concerns. This study evaluates the performance of federated learning (FL) for BrainAGE estimation in ischemic stroke patients treated with mechanical thrombectomy, and investigates its association with clinical phenotypes and functional outcomes. $\textbf{Methods:}$ We used FLAIR brain images from 1674 stroke patients across 16 hospital centers. We implemented standard machine learning and deep learning models for BrainAGE estimates under three data management strategies: centralized learning (pooled data), FL (local training at each site), and single-site learning. We reported prediction errors and examined associations between BrainAGE and vascular risk factors (e.g., diabetes mellitus, hypertension, smoking), as well as functional outcomes at three months post-stroke. Logistic regression evaluated BrainAGE's predictive value for these outcomes, adjusting for age, sex, vascular risk factors, stroke severity, time between MRI and arterial puncture, prior intravenous thrombolysis, and recanalisation outcome. $\textbf{Results:}$ While centralized learning yielded the most accurate predictions, FL consistently outperformed single-site models. BrainAGE was significantly higher in patients with diabetes mellitus across all models. Comparisons between patients with good and poor functional outcomes, and multivariate predictions of these outcomes showed the significance of the association between BrainAGE and post-stroke recovery. $\textbf{Conclusion:}$ FL enables accurate age predictions without data centralization. The strong association between BrainAGE, vascular risk factors, and post-stroke recovery highlights its potential for prognostic modeling in stroke care.
Related papers
- Robust brain age estimation from structural MRI with contrastive learning [8.439245091011358]
Estimating brain age from structural MRI has emerged as a powerful tool for characterizing normative and pathological aging.<n>We introduce a novel contrastive loss function, $mathcalLexp$, and evaluate it across multiple public neuroimaging datasets.
arXiv Detail & Related papers (2025-07-02T15:18:03Z) - Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.<n>Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.<n>We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.<n>Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
arXiv Detail & Related papers (2024-12-01T21:54:08Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.<n>This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Anatomical Foundation Models for Brain MRIs [6.993491018326816]
We propose AnatCL, an anatomical foundation model for brain MRIs.<n>We consider 12 different downstream tasks for the diagnosis of different conditions.<n>Our findings show that incorporating anatomical information during pre-training leads to more robust and general representations.
arXiv Detail & Related papers (2024-08-07T14:04:50Z) - TADM: Temporally-Aware Diffusion Model for Neurodegenerative Progression on Brain MRI [4.414541804340033]
Temporally-Aware Diffusion Model (TADM) learns the distribution of structural changes in terms of intensity differences between scans.
During training, we propose to leverage a pre-trained Brain-Age Estimator (BAE) to refine the model's training process.
Our approach will benefit applications, such as predicting patient outcomes or improving treatments for patients.
arXiv Detail & Related papers (2024-06-18T09:00:49Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Automatic lesion analysis for increased efficiency in outcome prediction
of traumatic brain injury [12.651451007914124]
This work explores the predictive power of imaging biomarkers extracted from routinely-acquired hospital admission CT scans.
We use lesion volumes and corresponding lesion statistics as inputs for an extended TBI outcome prediction model.
We find that automatically extracted quantitative CT features perform similarly or better than the Marshall score in predicting unfavourable TBI outcomes.
arXiv Detail & Related papers (2022-08-08T13:18:35Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
A novel 3D convolutional network, called two-stage-age-network (TSAN), is proposed to estimate brain age from T1-weighted MRI data.
Experiments with $6586$ MRIs showed that TSAN could provide accurate brain age estimation.
arXiv Detail & Related papers (2021-06-06T07:11:25Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.