Anatomical Foundation Models for Brain MRIs
- URL: http://arxiv.org/abs/2408.07079v3
- Date: Fri, 29 Nov 2024 10:04:17 GMT
- Title: Anatomical Foundation Models for Brain MRIs
- Authors: Carlo Alberto Barbano, Matteo Brunello, Benoit Dufumier, Marco Grangetto,
- Abstract summary: We propose AnatCL, an anatomical foundation model for brain MRIs.
We consider 12 different downstream tasks for the diagnosis of different conditions.
Our findings show that incorporating anatomical information during pre-training leads to more robust and general representations.
- Score: 6.993491018326816
- License:
- Abstract: Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
Related papers
- Deep Learning for Early Alzheimer Disease Detection with MRI Scans [1.9806397201363817]
Alzheimer's disease requires diagnosis by a detailed assessment of MRI scans and neuropsychological tests of the patients.
This project compares existing deep learning models in the pursuit of enhancing the accuracy and efficiency of AD diagnosis.
We perform rigorous evaluation to determine strengths and weaknesses for each model by considering sensitivity, specificity, and computational efficiency.
arXiv Detail & Related papers (2025-01-17T07:30:16Z) - Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
Black-box machine learning approaches to brain age gap prediction have limited practical utility.
We apply the VNN-based approach to study brain age gap using cortical thickness features for various prevalent neurodegenerative conditions.
Our results reveal distinct anatomic patterns for brain age gap in Alzheimer's disease, frontotemporal dementia, and atypical Parkinsonian disorders.
arXiv Detail & Related papers (2025-01-02T19:37:09Z) - Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.
Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.
We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.
Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
arXiv Detail & Related papers (2024-12-01T21:54:08Z) - Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
arXiv Detail & Related papers (2024-09-20T12:01:15Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormer is a general hybrid Transformer architecture for brain disease classification with single fMRI volume.
BrainFormer is constructed by modeling the local cues within each voxel with 3D convolutions.
We evaluate BrainFormer on five independently acquired datasets including ABIDE, ADNI, MPILMBB, ADHD-200 and ECHO.
arXiv Detail & Related papers (2022-08-05T07:54:10Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
We propose a potential solution by first learning a structural-to-functional transformation in brain MRI.
We then synthesize spatially matched functional images from large-scale structural scans.
We identify the temporal lobe to be the most predictive structural-region and the parieto-occipital lobe to be the most predictive functional-region of our model.
arXiv Detail & Related papers (2021-04-10T03:16:33Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.