論文の概要: Ignition Phase : Standard Training for Fast Adversarial Robustness
- arxiv url: http://arxiv.org/abs/2506.15685v1
- Date: Sun, 25 May 2025 13:12:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-29 09:28:14.742533
- Title: Ignition Phase : Standard Training for Fast Adversarial Robustness
- Title(参考訳): 点火段階 : 高速対向ロバストネスのための標準訓練
- Authors: Wang Yu-Hang, Liu ying, Fang liang, Wang Xuelin, Junkang Guo, Shiwei Li, Lei Gao, Jian Liu, Wenfei Yin,
- Abstract要約: AET(Adversarial Evolution Training)は、経験的リスク最小化(ERM)フェーズを従来のATに付与するフレームワークである。
AETは、同等または優れた堅牢性をより高速に達成し、クリーンな精度を改善し、トレーニングコストを8~25%削減する。
- 参考スコア(独自算出の注目度): 7.991279376802546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial Training (AT) is a cornerstone defense, but many variants overlook foundational feature representations by primarily focusing on stronger attack generation. We introduce Adversarial Evolution Training (AET), a simple yet powerful framework that strategically prepends an Empirical Risk Minimization (ERM) phase to conventional AT. We hypothesize this initial ERM phase cultivates a favorable feature manifold, enabling more efficient and effective robustness acquisition. Empirically, AET achieves comparable or superior robustness more rapidly, improves clean accuracy, and cuts training costs by 8-25\%. Its effectiveness is shown across multiple datasets, architectures, and when augmenting established AT methods. Our findings underscore the impact of feature pre-conditioning via standard training for developing more efficient, principled robust defenses. Code is available in the supplementary material.
- Abstract(参考訳): 敵の訓練(AT)は基礎的な防御であるが、多くの変種は、主により強力な攻撃生成に焦点を当てて基礎的な特徴表現を見落としている。
我々は,経験的リスク最小化(Empirical Risk Minimization,ERM)フェーズを従来のATに戦略的に導入する,シンプルながら強力なフレームワークであるAdversarial Evolution Training (AET)を紹介する。
我々は、この初期ERM位相が好ましい特徴多様体を育むことを仮定し、より効率的で効果的なロバスト性獲得を可能にする。
経験的に、AETは同等または優れた堅牢性をより高速に達成し、クリーンな精度を改善し、トレーニングコストを8~25%削減する。
有効性は、複数のデータセット、アーキテクチャ、および確立されたATメソッドの拡張時に示される。
本研究は,より効率的で原則化されたロバスト・ディフェンスを開発するための標準トレーニングによる機能プレコンディショニングの効果を裏付けるものである。
コードは補足資料で入手できる。
関連論文リスト
- Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - AROID: Improving Adversarial Robustness Through Online Instance-Wise Data Augmentation [6.625868719336385]
対戦訓練(英語: Adversarial Training、AT)は、敵の例に対する効果的な防御である。
データ拡張(DA)は、AT向けに適切に設計され最適化された場合、ロバストなオーバーフィッティングの軽減に有効であることが示されている。
本研究は、ATの堅牢な一般化を改善するために、オンライン、例えばDAポリシーを自動的に学習する新しい方法を提案する。
論文 参考訳(メタデータ) (2023-06-12T15:54:52Z) - LAS-AT: Adversarial Training with Learnable Attack Strategy [82.88724890186094]
LAS-ATと呼ばれる「学習可能な攻撃戦略」は、モデル堅牢性を改善するための攻撃戦略を自動生成することを学ぶ。
当社のフレームワークは,強靭性向上のためのトレーニングにAEを使用するターゲットネットワークと,AE生成を制御するための攻撃戦略を生成する戦略ネットワークで構成されている。
論文 参考訳(メタデータ) (2022-03-13T10:21:26Z) - ROPUST: Improving Robustness through Fine-tuning with Photonic
Processors and Synthetic Gradients [65.52888259961803]
ROPUSTは、頑健な事前学習モデルを活用し、その堅牢性を高めるためのシンプルで効率的な手法である。
我々は,ロバストベンチの4つの攻撃に対して,9つの異なるモデルを用いて実験を行った。
ROPUSTは,最先端の位相探索技術でも有効であることを示す。
論文 参考訳(メタデータ) (2021-07-06T12:03:36Z) - Analysis and Applications of Class-wise Robustness in Adversarial
Training [92.08430396614273]
敵の訓練は、敵の例に対するモデルロバスト性を改善するための最も効果的な手法の1つである。
従来の研究は主にモデルの全体的な堅牢性に焦点を当てており、各クラスの役割に関する詳細な分析はいまだに欠落している。
MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10, ImageNetの6つのベンチマークデータセットに対して, 逆トレーニングの詳細な診断を行う。
対戦型学習におけるより強力な攻撃手法は、主に脆弱なクラスに対するより成功した攻撃から、性能の向上を達成することを観察する。
論文 参考訳(メタデータ) (2021-05-29T07:28:35Z) - Bag of Tricks for Adversarial Training [50.53525358778331]
アドリアリトレーニングは、モデルの堅牢性を促進するための最も効果的な戦略の1つである。
最近のベンチマークでは、提案されたATの改良のほとんどは、単にトレーニング手順を早期に停止するよりも効果が低いことが示されている。
論文 参考訳(メタデータ) (2020-10-01T15:03:51Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
敵対的訓練は、ディープラーニングモデルに対する敵対的攻撃に対する最も効果的な防御の1つである。
本研究では,超球埋め込み機構をATプロシージャに組み込むことを提唱する。
我々は,CIFAR-10 と ImageNet データセットに対する幅広い敵対攻撃の下で本手法を検証した。
論文 参考訳(メタデータ) (2020-02-20T08:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。