論文の概要: Development of a Multiprocessing Interface Genetic Algorithm for Optimising a Multilayer Perceptron for Disease Prediction
- arxiv url: http://arxiv.org/abs/2506.15694v1
- Date: Tue, 27 May 2025 19:11:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-29 09:28:14.754593
- Title: Development of a Multiprocessing Interface Genetic Algorithm for Optimising a Multilayer Perceptron for Disease Prediction
- Title(参考訳): 疾患予測のための多層パーセプトロン最適化のためのマルチプロセスインタフェース遺伝的アルゴリズムの開発
- Authors: Iliyas Ibrahim Iliyas, Souley Boukari, Abdulsalam Yau Gital,
- Abstract要約: 本研究では,非線形特徴抽出,分類,効率的な最適化を統合したフレームワークを提案する。
このアプローチをウィスコンシン診断乳がんデータセット,パーキンソン病遠隔モニタリングデータセット,慢性腎疾患データセットの3つのデータセットで評価した。
MIGAによって調整されたアルゴリズムは、乳がんでは99.12%、パーキンソン病では94.87%、慢性腎臓病では100%の精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a framework that integrates nonlinear feature extraction, classification, and efficient optimization. First, kernel principal component analysis with a radial basis function kernel reduces dimensionality while preserving 95% of the variance. Second, a multilayer perceptron (MLP) learns to predict disease status. Finally, a modified multiprocessing genetic algorithm (MIGA) optimizes MLP hyperparameters in parallel over ten generations. We evaluated this approach on three datasets: the Wisconsin Diagnostic Breast Cancer dataset, the Parkinson's Telemonitoring dataset, and the chronic kidney disease dataset. The MLP tuned by the MIGA achieved the best accuracy of 99.12% for breast cancer, 94.87% for Parkinson's disease, and 100% for chronic kidney disease. These results outperform those of other methods, such as grid search, random search, and Bayesian optimization. Compared with a standard genetic algorithm, kernel PCA revealed nonlinear relationships that improved classification, and the MIGA's parallel fitness evaluations reduced the tuning time by approximately 60%. The genetic algorithm incurs high computational cost from sequential fitness evaluations, but our multiprocessing interface GA (MIGA) parallelizes this step, slashing the tuning time and steering the MLP toward the best accuracy score of 99.12%, 94.87%, and 100% for breast cancer, Parkinson's disease, and CKD, respectively.
- Abstract(参考訳): 本研究では,非線形特徴抽出,分類,効率的な最適化を統合したフレームワークを提案する。
第一に、ラジアル基底関数カーネルによるカーネル主成分分析は、95%の分散を保ちながら次元性を減少させる。
次に、多層パーセプトロン(MLP)が疾患の状態を予測する。
最後に、修正されたマルチプロセッシング遺伝的アルゴリズム(MIGA)は、10世代にわたってMLPハイパーパラメータを並列に最適化する。
このアプローチをウィスコンシン診断乳がんデータセット,パーキンソン病遠隔モニタリングデータセット,慢性腎疾患データセットの3つのデータセットで評価した。
MIGAが調整したMLPは、乳がんでは99.12%、パーキンソン病では94.87%、慢性腎臓病では100%と最も正確である。
これらの結果は、グリッド探索、ランダム探索、ベイズ最適化などの他の手法よりも優れている。
標準的な遺伝的アルゴリズムと比較して、カーネルPCAは分類を改善した非線形関係を明らかにし、MIGAの並列適合性評価はチューニング時間を約60%削減した。
遺伝的アルゴリズムは、連続したフィットネス評価から高い計算コストを発生させるが、我々のマルチプロセッシングインターフェースGA(MIGA)はこのステップを並列化し、チューニング時間を短縮し、乳がん、パーキンソン病、CKDに対して、99.12%、94.87%、100%の精度でMLPを操る。
関連論文リスト
- Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data Fusion [5.575308369829893]
ケルネル密度推定(KDE)とクルバック・リーブラー(KL)の発散を利用した特徴量に基づく融合アルゴリズムを提案する。
健常者2000名, 病人2000名から収集した心電図による社内データセットを用いて, PTB-XLデータセットを用いて本手法の検証を行った。
その結果, 本手法は, 統合データセットにおける異常心電図症例の特徴に基づく分類精度を大幅に向上させることを示した。
論文 参考訳(メタデータ) (2025-03-19T12:16:48Z) - An Effective Networks Intrusion Detection Approach Based on Hybrid
Harris Hawks and Multi-Layer Perceptron [47.81867479735455]
本稿では,Harris Hawks Optimization (HHO) を用いた多層パーセプトロン学習のための侵入検知システムを提案する。
HHO-MLPは、ネットワークの侵入検出エラーを最小限に抑えるため、学習プロセスにおいて最適なパラメータを選択することを目的としている。
HHO-MLPは、93.17%の精度、95.41%の感度、95.41%の特異度でトップスコアを獲得することで、優れた性能を示した。
論文 参考訳(メタデータ) (2024-02-21T06:25:50Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Detecting Chronic Kidney Disease(CKD) at the Initial Stage: A Novel
Hybrid Feature-selection Method and Robust Data Preparation Pipeline for
Different ML Techniques [0.0]
慢性腎臓病(CKD)は世界中で8億人近くに感染している。毎年約170万人が死亡している。
多くの研究者は、CKDを早期に検出するために異なる機械学習(ML)手法を適用しているが、詳細な研究はいまだに欠けている。
本稿では,医療データの複雑さを最適性能で扱うための構造的かつ徹底的な手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T20:38:49Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
効率的な生存率分類モデルが包括的に提示される。
欠落した値を入力し、ダミー変数符号化を用いてデータを変換し、チ二乗特徴選択を用いて59個の特徴から11個の最も相関した特徴にデータセットを圧縮することにより、合成データセットを生成する。
この点に関しては、決定木(Decision Tree)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、K-Nearest Neighbors(K-Nearest Neighbors)、グラディエントブースティング(Gradient Boosting)、Ada Boost(Ada Boost)、XG Boost(XG Boost)など、いくつかの教師付きML手法が訓練された。
論文 参考訳(メタデータ) (2022-01-22T08:01:22Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features
Selection [1.990876596716716]
子宮頸癌は世界でも最も致命的かつ一般的な疾患の1つである。
ディープラーニングと特徴選択を利用した完全自動化フレームワークを提案する。
このフレームワークは3つの公開ベンチマークデータセットで評価されている。
論文 参考訳(メタデータ) (2021-06-09T08:57:22Z) - Evolving Deep Convolutional Neural Network by Hybrid Sine-Cosine and
Extreme Learning Machine for Real-time COVID19 Diagnosis from X-Ray Images [0.5249805590164902]
ディープ・コンボリューショナル・ネットワーク(CNN)は、COVID-19陽性症例の診断に応用できるツールとみなすことができる。
本稿では,最後の完全接続層ではなく,ELM(Extreme Learning Machine)を用いることを提案する。
提案手法は、COVID-Xray-5kデータセットで98.83%の最終的な精度で比較ベンチマークを上回っている。
論文 参考訳(メタデータ) (2021-05-14T19:40:16Z) - COVID-MTL: Multitask Learning with Shift3D and Random-weighted Loss for
Automated Diagnosis and Severity Assessment of COVID-19 [39.57518533765393]
新型コロナウイルスの正確かつ効果的な評価を支援する自動化方法が緊急に必要である。
我々は,放射線学とNATの両方において,自動かつ同時検出と重症度評価が可能なエンドツーエンドマルチタスク学習フレームワーク(COVID-MTL)を提案する。
論文 参考訳(メタデータ) (2020-12-10T08:30:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。