論文の概要: Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data Fusion
- arxiv url: http://arxiv.org/abs/2504.02842v1
- Date: Wed, 19 Mar 2025 12:16:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-13 07:22:38.153425
- Title: Enhanced ECG Arrhythmia Detection Accuracy by Optimizing Divergence-Based Data Fusion
- Title(参考訳): 多様性に基づくデータ融合の最適化による心電図不整脈検出精度の向上
- Authors: Baozhuo Su, Qingli Dou, Kang Liu, Zhengxian Qu, Jerry Deng, Ting Tan, Yanan Gu,
- Abstract要約: ケルネル密度推定(KDE)とクルバック・リーブラー(KL)の発散を利用した特徴量に基づく融合アルゴリズムを提案する。
健常者2000名, 病人2000名から収集した心電図による社内データセットを用いて, PTB-XLデータセットを用いて本手法の検証を行った。
その結果, 本手法は, 統合データセットにおける異常心電図症例の特徴に基づく分類精度を大幅に向上させることを示した。
- 参考スコア(独自算出の注目度): 5.575308369829893
- License:
- Abstract: AI computation in healthcare faces significant challenges when clinical datasets are limited and heterogeneous. Integrating datasets from multiple sources and different equipments is critical for effective AI computation but is complicated by their diversity, complexity, and lack of representativeness, so we often need to join multiple datasets for analysis. The currently used method is fusion after normalization. But when using this method, it can introduce redundant information, decreasing the signal-to-noise ratio and reducing classification accuracy. To tackle this issue, we propose a feature-based fusion algorithm utilizing Kernel Density Estimation (KDE) and Kullback-Leibler (KL) divergence. Our approach involves initially preprocessing and continuous estimation on the extracted features, followed by employing the gradient descent method to identify the optimal linear parameters that minimize the KL divergence between the feature distributions. Using our in-house datasets consisting of ECG signals collected from 2000 healthy and 2000 diseased individuals by different equipments and verifying our method by using the publicly available PTB-XL dataset which contains 21,837 ECG recordings from 18,885 patients. We employ a Light Gradient Boosting Machine (LGBM) model to do the binary classification. The results demonstrate that the proposed fusion method significantly enhances feature-based classification accuracy for abnormal ECG cases in the merged datasets, compared to the normalization method. This data fusion strategy provides a new approach to process heterogeneous datasets for the optimal AI computation results.
- Abstract(参考訳): 医療におけるAI計算は、臨床データセットが限定的で異種である場合、重大な課題に直面します。
複数のソースと異なる機器からデータセットを統合することは、効果的なAI計算には不可欠ですが、その多様性、複雑さ、代表性の欠如によって複雑です。
現在使われている方法は、正常化後の核融合である。
しかし,この手法を用いると冗長な情報を導入し,信号対雑音比を低減し,分類精度を低下させることができる。
この問題に対処するために,KDE(Kernel Density Estimation)とKL(Kullback-Leibler)の発散を利用した特徴ベース融合アルゴリズムを提案する。
提案手法では, 抽出した特徴量に対する事前処理と連続推定を行い, 特徴量間のKL分散を最小化する最適線形パラメータの同定に勾配降下法を用いる。
健常者2000名と病人2000名から収集した心電図のデータを異なる機器で分析し,1,837名の心電図記録を18,885名の患者から収集した,公開可能なPTB-XLデータセットを用いて検証した。
バイナリ分類を行うために,光グラディエントブースティングマシン (LGBM) モデルを用いる。
その結果, 本手法は, 正規化法と比較して, 異常ECG症例の特徴に基づく分類精度を著しく向上させることを示した。
このデータ融合戦略は、最適なAI計算結果のための異種データセットを処理するための新しいアプローチを提供する。
関連論文リスト
- Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
条件付きラテント空間変分オートエンコーダ(CL-VAE)は、既知の不整形クラスと未知の不整形クラスを持つデータに対する異常検出のための前処理を改善した。
モデルでは異常検出の精度が向上し、MNISTデータセットで97.4%のAUCが達成された。
さらに、CL-VAEは、アンサンブルの利点、より解釈可能な潜在空間、モデルサイズに制限のある複雑なデータでパターンを学習する能力の増大を示す。
論文 参考訳(メタデータ) (2024-10-16T07:48:53Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - An Explainable Deep Learning-Based Method For Schizophrenia Diagnosis Using Generative Data-Augmentation [0.3222802562733786]
脳波記録を用いた統合失調症の自動診断にディープラーニングを用いた手法を応用した。
このアプローチは、診断の精度を高める強力な手法である生成データ拡張を利用する。
論文 参考訳(メタデータ) (2023-10-25T12:55:16Z) - Optimal transport for automatic alignment of untargeted metabolomic data [8.692678207022084]
本稿では,LC-MSデータセットを最適なトランスポートで自動的に組み合わせる,フレキシブルでユーザフレンドリなアルゴリズムであるGromovMatcherを紹介する。
特徴強度相関構造を利用することで、GromovMatcherは優れたアライメント精度とロバスト性を提供する。
我々は,GromovMatcherが,いくつかのがんタイプに関連するライフスタイルのリスク要因に関連するバイオマーカーの検索をいかに促進するかを示す。
論文 参考訳(メタデータ) (2023-06-05T20:08:19Z) - A Federated Learning-based Industrial Health Prognostics for
Heterogeneous Edge Devices using Matched Feature Extraction [16.337207503536384]
本稿では,特徴類似性マッチングパラメータアグリゲーションアルゴリズムを用いたFL型健康予後モデルを提案する。
提案手法は, 健康状態推定と生活寿命推定において, 44.5%, 39.3%の精度向上を達成できることを示す。
論文 参考訳(メタデータ) (2023-05-13T07:20:31Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Non-stationary Gaussian process discriminant analysis with variable
selection for high-dimensional functional data [0.0]
高次元分類と特徴選択は、最近のデータ取得技術の進歩とともに至るところで行われている。
これらの構造は、主に変数の選択と分類を別々に行う2段階のアプローチに依存する一般的な手法に、さらなる課題をもたらす。
本稿では、これらのステップを統一されたフレームワークで組み合わせた、新しいガウス過程判別分析(GPDA)を提案する。
論文 参考訳(メタデータ) (2021-09-29T03:35:49Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。