UniMate: A Unified Model for Mechanical Metamaterial Generation, Property Prediction, and Condition Confirmation
- URL: http://arxiv.org/abs/2506.15722v1
- Date: Thu, 05 Jun 2025 06:05:09 GMT
- Title: UniMate: A Unified Model for Mechanical Metamaterial Generation, Property Prediction, and Condition Confirmation
- Authors: Wangzhi Zhan, Jianpeng Chen, Dongqi Fu, Dawei Zhou,
- Abstract summary: In mechanical metamaterial design, three key modalities are typically involved, i.e., 3D topology, density condition, and mechanical property.<n>We propose a unified model named UNIMATE, which consists of a modality alignment module and a synergetic diffusion generation module.
- Score: 8.45290125942946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metamaterials are artificial materials that are designed to meet unseen properties in nature, such as ultra-stiffness and negative materials indices. In mechanical metamaterial design, three key modalities are typically involved, i.e., 3D topology, density condition, and mechanical property. Real-world complex application scenarios place the demanding requirements on machine learning models to consider all three modalities together. However, a comprehensive literature review indicates that most existing works only consider two modalities, e.g., predicting mechanical properties given the 3D topology or generating 3D topology given the required properties. Therefore, there is still a significant gap for the state-of-the-art machine learning models capturing the whole. Hence, we propose a unified model named UNIMATE, which consists of a modality alignment module and a synergetic diffusion generation module. Experiments indicate that UNIMATE outperforms the other baseline models in topology generation task, property prediction task, and condition confirmation task by up to 80.2%, 5.1%, and 50.2%, respectively. We opensource our proposed UNIMATE model and corresponding results at https://github.com/wzhan24/UniMate.
Related papers
- MOFSimBench: Evaluating Universal Machine Learning Interatomic Potentials In Metal--Organic Framework Molecular Modeling [0.19506923346234722]
Universal machine learning interatomic potentials (uMLIPs) have emerged as powerful tools for accelerating atomistic simulations.<n>We introduce MOFSimBench, a benchmark to evaluate uMLIPs on key materials modeling tasks for nanoporous materials.<n>We find that top-performing uMLIPs consistently outperform classical force fields and fine-tuned machine learning potentials across all tasks.
arXiv Detail & Related papers (2025-07-16T00:00:55Z) - Explainable Prediction of the Mechanical Properties of Composites with CNNs [11.662972025976192]
We show that convolutional neural networks (CNNs) equipped with methods from explainable AI (XAI) can be successfully deployed to solve this problem.<n>Our approach uses customised CNNs trained on a dataset we generate using transverse tension tests to predict composites' mechanical properties.<n>We then use SHAP and Integrated Gradients, two post-hoc XAI methods, to explain the predictions, showing that the CNNs use the critical geometrical features that influence the composites' behaviour.
arXiv Detail & Related papers (2025-05-20T08:54:06Z) - Quantum-informed simulations for mechanics of materials: DFTB+MBD framework [40.83978401377059]
We study how quantum effects can modify the mechanical properties of systems relevant to materials engineering.
We provide an open-source repository containing all codes, datasets, and examples presented in this work.
arXiv Detail & Related papers (2024-04-05T16:59:01Z) - A Generative Machine Learning Model for Material Microstructure 3D
Reconstruction and Performance Evaluation [4.169915659794567]
The dimensional extension from 2D to 3D is viewed as a highly challenging inverse problem from the current technological perspective.
A novel generative model that integrates the multiscale properties of U-net with and the generative capabilities of GAN has been proposed.
The model's accuracy is further improved by combining the image regularization loss with the Wasserstein distance loss.
arXiv Detail & Related papers (2024-02-24T13:42:34Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Physics-informed Variational Autoencoders for Improved Robustness to Environmental Factors of Variation [0.6384650391969042]
p$3$VAE is a variational autoencoder that integrates prior physical knowledge about the latent factors of variation related to the data acquisition conditions.<n>We introduce a semi-supervised learning algorithm that strikes a balance between the machine learning part and the physics part.
arXiv Detail & Related papers (2022-10-19T09:32:15Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.