Context Matters! Relaxing Goals with LLMs for Feasible 3D Scene Planning
- URL: http://arxiv.org/abs/2506.15828v1
- Date: Wed, 18 Jun 2025 19:14:56 GMT
- Title: Context Matters! Relaxing Goals with LLMs for Feasible 3D Scene Planning
- Authors: Emanuele Musumeci, Michele Brienza, Francesco Argenziano, Vincenzo Suriani, Daniele Nardi, Domenico D. Bloisi,
- Abstract summary: We present an approach integrating classical planning with Large Language Models.<n>We propose a hierarchical formulation that enables robots to make unfeasible tasks tractable.<n>Our method demonstrates its ability to adapt and execute tasks effectively within environments modeled using 3D Scene Graphs.
- Score: 2.111102681327218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical planning in AI and Robotics addresses complex tasks by shifting from imperative to declarative approaches (e.g., PDDL). However, these methods often fail in real scenarios due to limited robot perception and the need to ground perceptions to planning predicates. This often results in heavily hard-coded behaviors that struggle to adapt, even with scenarios where goals can be achieved through relaxed planning. Meanwhile, Large Language Models (LLMs) lead to planning systems that leverage commonsense reasoning but often at the cost of generating unfeasible and/or unsafe plans. To address these limitations, we present an approach integrating classical planning with LLMs, leveraging their ability to extract commonsense knowledge and ground actions. We propose a hierarchical formulation that enables robots to make unfeasible tasks tractable by defining functionally equivalent goals through gradual relaxation. This mechanism supports partial achievement of the intended objective, suited to the agent's specific context. Our method demonstrates its ability to adapt and execute tasks effectively within environments modeled using 3D Scene Graphs through comprehensive qualitative and quantitative evaluations. We also show how this method succeeds in complex scenarios where other benchmark methods are more likely to fail. Code, dataset, and additional material are released to the community.
Related papers
- Can LLM-Reasoning Models Replace Classical Planning? A Benchmark Study [0.0]
Large Language Models have sparked interest in their potential for robotic task planning.<n>While these models demonstrate strong generative capabilities, their effectiveness in producing structured and executable plans remains uncertain.<n>This paper presents a systematic evaluation of a broad spectrum of current state of the art language models.
arXiv Detail & Related papers (2025-07-31T14:25:54Z) - Grounding Language Models with Semantic Digital Twins for Robotic Planning [6.474368392218828]
We introduce a novel framework that integrates Semantic Digital Twins (SDTs) with Large Language Models (LLMs)<n>The proposed framework effectively combines high-level reasoning with semantic environment understanding, achieving reliable task completion in the face of uncertainty and failure.
arXiv Detail & Related papers (2025-06-19T17:38:00Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
We propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization.<n>It is the first expert-free planning framework since we combine the world knowledge from Large Language Models with formal reasoning.<n>Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
arXiv Detail & Related papers (2025-01-25T13:33:22Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - Introspective Planning: Aligning Robots' Uncertainty with Inherent Task Ambiguity [0.659529078336196]
Large language models (LLMs) exhibit advanced reasoning skills, enabling robots to comprehend natural language instructions and strategically plan high-level actions.<n>LLMs hallucination may result in robots confidently executing plans that are misaligned with user goals or even unsafe in critical scenarios.<n>We propose introspective planning, a systematic approach that align LLM's uncertainty with the inherent ambiguity of the task.
arXiv Detail & Related papers (2024-02-09T16:40:59Z) - LLM-Assist: Enhancing Closed-Loop Planning with Language-Based Reasoning [65.86754998249224]
We develop a novel hybrid planner that leverages a conventional rule-based planner in conjunction with an LLM-based planner.
Our approach navigates complex scenarios which existing planners struggle with, produces well-reasoned outputs while also remaining grounded through working alongside the rule-based approach.
arXiv Detail & Related papers (2023-12-30T02:53:45Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
We propose a TAsk Planing Agent (TaPA) in embodied tasks for grounded planning with physical scene constraint.
During inference, we discover the objects in the scene by extending open-vocabulary object detectors to multi-view RGB images collected in different achievable locations.
Experimental results show that the generated plan from our TaPA framework can achieve higher success rate than LLaVA and GPT-3.5 by a sizable margin.
arXiv Detail & Related papers (2023-07-04T17:58:25Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.