Clinically Interpretable Mortality Prediction for ICU Patients with Diabetes and Atrial Fibrillation: A Machine Learning Approach
- URL: http://arxiv.org/abs/2506.15901v1
- Date: Wed, 18 Jun 2025 22:04:12 GMT
- Title: Clinically Interpretable Mortality Prediction for ICU Patients with Diabetes and Atrial Fibrillation: A Machine Learning Approach
- Authors: Li Sun, Shuheng Chen, Yong Si, Junyi Fan, Maryam Pishgar, Elham Pishgar, Kamiar Alaei, Greg Placencia,
- Abstract summary: Patients with diabetes mellitus (DM) and atrial fibrillation (AF) face elevated mortality in intensive care units (ICUs)<n>This study developed an interpretable machine learning model predicting 28-day mortality in ICU patients with concurrent DM and AF.
- Score: 3.5626691568652507
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: Patients with both diabetes mellitus (DM) and atrial fibrillation (AF) face elevated mortality in intensive care units (ICUs), yet models targeting this high-risk group remain limited. Objective: To develop an interpretable machine learning (ML) model predicting 28-day mortality in ICU patients with concurrent DM and AF using early-phase clinical data. Methods: A retrospective cohort of 1,535 adult ICU patients with DM and AF was extracted from the MIMIC-IV database. Data preprocessing involved median/mode imputation, z-score normalization, and early temporal feature engineering. A two-step feature selection pipeline-univariate filtering (ANOVA F-test) and Random Forest-based multivariate ranking-yielded 19 interpretable features. Seven ML models were trained with stratified 5-fold cross-validation and SMOTE oversampling. Interpretability was assessed via ablation and Accumulated Local Effects (ALE) analysis. Results: Logistic regression achieved the best performance (AUROC: 0.825; 95% CI: 0.779-0.867), surpassing more complex models. Key predictors included RAS, age, bilirubin, and extubation. ALE plots showed intuitive, non-linear effects such as age-related risk acceleration and bilirubin thresholds. Conclusion: This interpretable ML model offers accurate risk prediction and clinical insights for early ICU triage in patients with DM and AF.
Related papers
- Translating Machine Learning Interpretability into Clinical Insights for ICU Mortality Prediction [0.18416014644193068]
We developed and rigorously evaluated two machine learning models along with interpretation mechanisms.<n>We examined two datasets: one with imputed missing values (130,810 patients, 5.58% ICU mortality) and another excluding patients with missing data (5,661 patients, 23.65% ICU mortality)<n>The random forest (RF) model demonstrated an AUROC of 0.912 with the first dataset and 0.839 with the second dataset, while the XGBoost model achieved an AUROC of 0.924 with the first dataset and 0.834 with the second dataset.
arXiv Detail & Related papers (2025-07-30T02:19:06Z) - Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning [3.4335475695580127]
Hypertensive kidney disease (HKD) patients in intensive care units (ICUs) face high short-term mortality.<n>We developed a machine learning framework to predict 30-day in-hospital mortality among ICU patients with HKD.
arXiv Detail & Related papers (2025-07-25T00:48:23Z) - Predicting Postoperative Stroke in Elderly SICU Patients: An Interpretable Machine Learning Model Using MIMIC Data [0.0]
Postoperative stroke remains a critical complication in elderly surgical intensive care unit (SICU) patients.<n>We constructed a combined cohort of 19,085 elderly SICU admissions from the MIMIC-III and MIMIC-IV databases.<n>We developed an interpretable machine learning framework to predict in-hospital stroke using clinical data from the first 24 hours of intensive care unit stay.
arXiv Detail & Related papers (2025-06-02T22:53:12Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - Machine Learning-Based Model for Postoperative Stroke Prediction in Coronary Artery Disease [0.0]
This study aims to develop and evaluate a sophisticated machine learning prediction model to assess postoperative stroke risk.<n>The dataset has 70% training and 30% test. Numerical values were normalized, whereas categorical variables were one-hot encoded.<n> Logistic Regression, XGBoost, SVM, and CatBoost were employed for predictive modeling, and SHAP analysis assessed stroke risk for each variable.
arXiv Detail & Related papers (2025-03-15T02:50:32Z) - Machine Learning-Based Prediction of ICU Mortality in Sepsis-Associated Acute Kidney Injury Patients Using MIMIC-IV Database with Validation from eICU Database [0.0]
Sepsis-Associated Acute Kidney Injury (SA-AKI) leads to high mortality in intensive care.<n>This study develops machine learning models to predict Intensive Care Unit (ICU) mortality in SA-AKI patients.
arXiv Detail & Related papers (2025-02-25T08:49:22Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Pulmonary Embolism Mortality Prediction Using Multimodal Learning Based on Computed Tomography Angiography and Clinical Data [31.830488752817804]
The objective of this study is to implement deep learning models using Computed Tomography Angiography (CTPA), clinical data, and Pulmonary Severity Index (PESI) scores to predict PE mortality.
arXiv Detail & Related papers (2024-06-03T13:10:13Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Robust Meta-Model for Predicting the Need for Blood Transfusion in
Non-traumatic ICU Patients [10.169599503547134]
Blood transfusions, crucial in managing anemia and coagulopathy in ICU settings, require accurate prediction for effective resource allocation and patient risk assessment.
This study aims to develop an advanced machine learning-based model to predict the probability of transfusion necessity over the next 24 hours for a diverse range of non-traumatic ICU patients.
arXiv Detail & Related papers (2024-01-01T23:25:48Z) - Enhanced Mortality Prediction In Patients With Subarachnoid Haemorrhage
Using A Deep Learning Model Based On The Initial CT Scan [34.86503928854081]
Convolutional neural networks (CNN) are capable of generating highly accurate predictions from imaging data.
Our objective was to predict mortality in Subarachnoid hemorrhage patients by processing the initial CT scan on a CNN based algorithm.
arXiv Detail & Related papers (2023-08-25T13:33:56Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
We develop various AI models to predict hospitalization on a large (over 110$k$) cohort of COVID-19 positive-tested US patients.
Despite high data unbalance, the models reach average precision 0.96-0.98 (0.75-0.85), recall 0.96-0.98 (0.74-0.85), and $F_score 0.97-0.98 (0.79-0.83) on the non-hospitalized (or hospitalized) class.
arXiv Detail & Related papers (2021-10-28T10:23:38Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.