Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning
- URL: http://arxiv.org/abs/2507.18866v1
- Date: Fri, 25 Jul 2025 00:48:23 GMT
- Title: Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning
- Authors: Yong Si, Junyi Fan, Li Sun, Shuheng Chen, Minoo Ahmadi, Elham Pishgar, Kamiar Alaei, Greg Placencia, Maryam Pishgar,
- Abstract summary: Hypertensive kidney disease (HKD) patients in intensive care units (ICUs) face high short-term mortality.<n>We developed a machine learning framework to predict 30-day in-hospital mortality among ICU patients with HKD.
- Score: 3.4335475695580127
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: Hypertensive kidney disease (HKD) patients in intensive care units (ICUs) face high short-term mortality, but tailored risk prediction tools are lacking. Early identification of high-risk individuals is crucial for clinical decision-making. Methods: We developed a machine learning framework to predict 30-day in-hospital mortality among ICU patients with HKD using early clinical data from the MIMIC-IV v2.2 database. A cohort of 1,366 adults was curated with strict criteria, excluding malignancy cases. Eighteen clinical features-including vital signs, labs, comorbidities, and therapies-were selected via random forest importance and mutual information filtering. Several models were trained and compared with stratified five-fold cross-validation; CatBoost demonstrated the best performance. Results: CatBoost achieved an AUROC of 0.88 on the independent test set, with sensitivity of 0.811 and specificity of 0.798. SHAP values and Accumulated Local Effects (ALE) plots showed the model relied on meaningful predictors such as altered consciousness, vasopressor use, and coagulation status. Additionally, the DREAM algorithm was integrated to estimate patient-specific posterior risk distributions, allowing clinicians to assess both predicted mortality and its uncertainty. Conclusions: We present an interpretable machine learning pipeline for early, real-time risk assessment in ICU patients with HKD. By combining high predictive performance with uncertainty quantification, our model supports individualized triage and transparent clinical decisions. This approach shows promise for clinical deployment and merits external validation in broader critical care populations.
Related papers
- Clinically Interpretable Mortality Prediction for ICU Patients with Diabetes and Atrial Fibrillation: A Machine Learning Approach [3.5626691568652507]
Patients with diabetes mellitus (DM) and atrial fibrillation (AF) face elevated mortality in intensive care units (ICUs)<n>This study developed an interpretable machine learning model predicting 28-day mortality in ICU patients with concurrent DM and AF.
arXiv Detail & Related papers (2025-06-18T22:04:12Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - Machine Learning-Based Prediction of ICU Mortality in Sepsis-Associated Acute Kidney Injury Patients Using MIMIC-IV Database with Validation from eICU Database [0.0]
Sepsis-Associated Acute Kidney Injury (SA-AKI) leads to high mortality in intensive care.<n>This study develops machine learning models to predict Intensive Care Unit (ICU) mortality in SA-AKI patients.
arXiv Detail & Related papers (2025-02-25T08:49:22Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
Sepsis is a severe condition responsible for many deaths in the United States and worldwide.<n>Previous studies employing machine learning faced limitations in feature selection and model interpretability.<n>This research aimed to develop an interpretable and accurate machine learning model to predict in-hospital sepsis mortality.
arXiv Detail & Related papers (2024-08-03T00:28:25Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.