Heterogeneous-Modal Unsupervised Domain Adaptation via Latent Space Bridging
- URL: http://arxiv.org/abs/2506.15971v1
- Date: Thu, 19 Jun 2025 02:31:51 GMT
- Title: Heterogeneous-Modal Unsupervised Domain Adaptation via Latent Space Bridging
- Authors: Jiawen Yang, Shuhao Chen, Yucong Duan, Ke Tang, Yu Zhang,
- Abstract summary: We propose a novel setting called Heterogeneous-Modal Unsupervised Domain Adaptation (HMUDA)<n>HMUDA enables knowledge transfer between completely different modalities by leveraging a bridge domain containing unlabeled samples from both modalities.<n>We propose Latent Space Bridging (LSB), a specialized framework designed for the semantic segmentation task.
- Score: 12.171477896623148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) methods effectively bridge domain gaps but become struggled when the source and target domains belong to entirely distinct modalities. To address this limitation, we propose a novel setting called Heterogeneous-Modal Unsupervised Domain Adaptation (HMUDA), which enables knowledge transfer between completely different modalities by leveraging a bridge domain containing unlabeled samples from both modalities. To learn under the HMUDA setting, we propose Latent Space Bridging (LSB), a specialized framework designed for the semantic segmentation task. Specifically, LSB utilizes a dual-branch architecture, incorporating a feature consistency loss to align representations across modalities and a domain alignment loss to reduce discrepancies between class centroids across domains. Extensive experiments conducted on six benchmark datasets demonstrate that LSB achieves state-of-the-art performance.
Related papers
- Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation [31.150256154504696]
Unsupervised Domain Adaptation (UDA) has propelled the deployment of deep learning from limited experimental datasets into real-world unconstrained domains.
Most UDA approaches align features within a common embedding space and apply a shared classifier for target prediction.
We propose to simultaneously conduct feature alignment in two individual spaces focusing on different domains, and create for each space a domain-oriented classifier.
arXiv Detail & Related papers (2022-08-02T01:38:37Z) - Controlled Generation of Unseen Faults for Partial and OpenSet&Partial
Domain Adaptation [0.0]
New operating conditions can result in a performance drop of fault diagnostics models due to the domain gap between the training and the testing data distributions.
We propose a new framework based on a Wasserstein GAN for Partial and OpenSet&Partial domain adaptation.
The main contribution is the controlled fault data generation that enables to generate unobserved fault types and severity levels in the target domain.
arXiv Detail & Related papers (2022-04-29T13:05:25Z) - Amplitude Spectrum Transformation for Open Compound Domain Adaptive
Semantic Segmentation [62.68759523116924]
Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting.
We propose a novel feature space Amplitude Spectrum Transformation (AST)
arXiv Detail & Related papers (2022-02-09T05:40:34Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation [1.2691047660244335]
Unsupervised Domain Adaptation (UDA) aims to align the labeled source distribution with the unlabeled target distribution to obtain domain invariant predictive models.
We propose Contrastive Learning framework for semi-supervised Domain Adaptation (CLDA) that attempts to bridge the intra-domain gap.
CLDA achieves state-of-the-art results on all the above datasets.
arXiv Detail & Related papers (2021-06-30T20:23:19Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
arXiv Detail & Related papers (2020-12-15T11:36:21Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.