Empowering Graph-based Approximate Nearest Neighbor Search with Adaptive Awareness Capabilities
- URL: http://arxiv.org/abs/2506.15986v1
- Date: Thu, 19 Jun 2025 03:07:12 GMT
- Title: Empowering Graph-based Approximate Nearest Neighbor Search with Adaptive Awareness Capabilities
- Authors: Jiancheng Ruan, Tingyang Chen, Renchi Yang, Xiangyu Ke, Yunjun Gao,
- Abstract summary: This paper proposes GATE, high-tier proximity Graph with Adaptive Topology and Query AwarEness.<n>Gate achieves a 1.2-2.0X speed-up in query performance compared to state-of-the-art graph-based indexes.
- Score: 19.352675865525395
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Approximate Nearest Neighbor Search (ANNS) in high-dimensional spaces finds extensive applications in databases, information retrieval, recommender systems, etc. While graph-based methods have emerged as the leading solution for ANNS due to their superior query performance, they still face several challenges, such as struggling with local optima and redundant computations. These issues arise because existing methods (i) fail to fully exploit the topological information underlying the proximity graph G, and (ii) suffer from severe distribution mismatches between the base data and queries in practice. To this end, this paper proposes GATE, high-tier proximity Graph with Adaptive Topology and Query AwarEness, as a lightweight and adaptive module atop the graph-based indexes to accelerate ANNS. Specifically, GATE formulates the critical problem to identify an optimal entry point in the proximity graph for a given query, facilitating faster online search. By leveraging the inherent clusterability of high-dimensional data, GATE first extracts a small set of hub nodes V as candidate entry points. Then, resorting to a contrastive learning-based two-tower model, GATE encodes both the structural semantics underlying G and the query-relevant features into the latent representations of these hub nodes V. A navigation graph index on V is further constructed to minimize the model inference overhead. Extensive experiments demonstrate that GATE achieves a 1.2-2.0X speed-up in query performance compared to state-of-the-art graph-based indexes.
Related papers
- Divide-Then-Rule: A Cluster-Driven Hierarchical Interpolator for Attribute-Missing Graphs [51.13363550716544]
Deep graph clustering is an unsupervised task aimed at partitioning nodes with incomplete attributes into distinct clusters.<n>Existing imputation methods for attribute-missing graphs often fail to account for the varying amounts of information available across node neighborhoods.<n>We propose Divide-Then-Rule Graph Completion (DTRGC) to address this issue.
arXiv Detail & Related papers (2025-07-12T03:33:19Z) - Distance Adaptive Beam Search for Provably Accurate Graph-Based Nearest Neighbor Search [23.208935102841103]
We propose a new distance-based termination condition for beam search to replace the commonly used condition based on beam width.<n>We prove that, as long as the search graph is navigable, our resulting Adaptive Beam Search method is guaranteed to approximately solve the nearest-neighbor problem.<n>We find that Adaptive Beam Search outperforms standard beam search over a range of recall values, data sets, graph constructions, and target number of nearest neighbors.
arXiv Detail & Related papers (2025-05-21T15:18:53Z) - Theoretical and Empirical Analysis of Adaptive Entry Point Selection for
Graph-based Approximate Nearest Neighbor Search [14.832208701208414]
We present a theoretical and empirical analysis of the adaptive entry point selection for graph-based approximate nearest neighbor search (ANNS)
We introduce novel concepts: $btextit-monotonic path$ and $Btextit-MSNET.
We prove that adaptive entry point selection offers better performance upper bound than the fixed central entry point under more general conditions than previous work.
arXiv Detail & Related papers (2024-02-07T10:05:42Z) - On Exploring Node-feature and Graph-structure Diversities for Node Drop
Graph Pooling [86.65151066870739]
Current node drop pooling methods ignore the graph diversity in terms of the node features and the graph structures, thus resulting in suboptimal graph-level representations.
We propose a novel plug-and-play score scheme and refer to it as MID, which consists of a textbfMulti score space with two operations, textiti.e., fltextbfIpscore and textbfDropscore.
Specifically, the multidimensional score space depicts the significance of nodes through multiple criteria; the flipscore encourages the maintenance of dissimilar node
arXiv Detail & Related papers (2023-06-22T08:02:01Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search [33.9052190473029]
Subgraph Matching is a core operation in graph database search, biomedical analysis, social group finding, etc.
In this paper, we propose a novel encoder-decoder neural network architecture to dynamically compute the matching information between the query and the target graphs.
Experiments on five large real-world target graphs show that N-BLS can significantly improve the subgraph matching performance.
arXiv Detail & Related papers (2022-07-21T04:47:21Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - GLSearch: Maximum Common Subgraph Detection via Learning to Search [33.9052190473029]
We propose GLSearch, a Graph Neural Network (GNN) based learning to search model.
Our model is built upon the branch and bound bound, which selects one pair of nodes from the two input graphs to expand at a time.
Our GLSearch can be potentially extended to solve many other problems with constraints on graphs.
arXiv Detail & Related papers (2020-02-08T10:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.