Quantum Artificial Intelligence for Secure Autonomous Vehicle Navigation: An Architectural Proposal
- URL: http://arxiv.org/abs/2506.16000v1
- Date: Thu, 19 Jun 2025 03:45:49 GMT
- Title: Quantum Artificial Intelligence for Secure Autonomous Vehicle Navigation: An Architectural Proposal
- Authors: Hemanth Kannamarlapudi, Sowmya Chintalapudi,
- Abstract summary: We propose a novel architecture based on Quantum Artificial Intelligence.<n>Quantum Neural Networks for multimodal sensor fusion, Nav-Q for Quantum reinforcement learning for navigation policy optimization.<n>Finally, post quantum cryptographic protocols are used to secure communication channels for both within vehicle communication and V2X (Vehicle to Everything) communications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Navigation is a very crucial aspect of autonomous vehicle ecosystem which heavily relies on collecting and processing large amounts of data in various states and taking a confident and safe decision to define the next vehicle maneuver. In this paper, we propose a novel architecture based on Quantum Artificial Intelligence by enabling quantum and AI at various levels of navigation decision making and communication process in Autonomous vehicles : Quantum Neural Networks for multimodal sensor fusion, Nav-Q for Quantum reinforcement learning for navigation policy optimization and finally post-quantum cryptographic protocols for secure communication. Quantum neural networks uses quantum amplitude encoding to fuse data from various sensors like LiDAR, radar, camera, GPS and weather etc., This approach gives a unified quantum state representation between heterogeneous sensor modalities. Nav-Q module processes the fused quantum states through variational quantum circuits to learn optimal navigation policies under swift dynamic and complex conditions. Finally, post quantum cryptographic protocols are used to secure communication channels for both within vehicle communication and V2X (Vehicle to Everything) communications and thus secures the autonomous vehicle communication from both classical and quantum security threats. Thus, the proposed framework addresses fundamental challenges in autonomous vehicles navigation by providing quantum performance and future proof security. Index Terms Quantum Computing, Autonomous Vehicles, Sensor Fusion
Related papers
- Quantum-Accelerated Wireless Communications: Concepts, Connections, and Implications [59.0413662882849]
Quantum computing is poised to redefine the algorithmic foundations of communication systems.<n>This article outlines the fundamentals of quantum computing in a style familiar to the communications society.<n>We highlight a mathematical harmony between quantum and wireless systems, which makes the topic more enticing to wireless researchers.
arXiv Detail & Related papers (2025-06-25T22:25:47Z) - Drone- and Vehicle-Based Quantum Key Distribution [0.0]
Quantum key distribution is a point-to-point communication protocol that leverages quantum mechanics to enable secure information exchange.<n>Here, we describe a modular, platform-agnostic, quantum key distribution transmitter and receiver with reduced size, weight, and power consumption.<n>We deploy the system on different moving platforms, demonstrating drone-to-drone, drone-to-vehicle, and vehicle-to-vehicle quantum communication.
arXiv Detail & Related papers (2025-05-23T07:46:56Z) - Quantum Information Processing, Sensing and Communications: Their Myths, Realities and Futures [61.25494706587422]
The state-of-the-art, knowledge gaps and future evolution of quantum machine learning are discussed.<n>We conclude with a set of promising future research ideas in the field of ultimately secure quantum communications.
arXiv Detail & Related papers (2024-12-01T22:28:02Z) - Security Enhancement of Quantum Communication in Space-Air-Ground Integrated Networks [7.404591865944407]
Quantum teleportation achieves the transmission of quantum states through quantum channels.
We propose a practical solution that ensures secure information transmission even in the presence of errors in both classical and quantum channels.
arXiv Detail & Related papers (2024-10-22T14:27:21Z) - Physical Layer Aspects of Quantum Communications: A Survey [31.406787669796184]
Quantum communication systems support unique applications in the form of distributed quantum computing, distributed quantum sensing, and several cryptographic protocols.
Main enabler in these communication systems is an efficient infrastructure that is capable to transport unknown quantum states with high rate and fidelity.
Despite the fundamental differences between the classic and quantum worlds, there exist universal communication concepts that may proven beneficial in quantum communication systems as well.
arXiv Detail & Related papers (2024-07-12T13:16:47Z) - Quantum integrated sensing and communication via entanglement [4.854937611943075]
We propose a novel quantum integrated sensing and communication protocol, which achieves quantum sensing under the Heisenberg limit.
We have theoretically proven its security against eavesdroppers.
arXiv Detail & Related papers (2024-04-12T09:17:43Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Towards Quantum-Native Communication Systems: State-of-the-Art, Trends, and Challenges [27.282184604334603]
The survey examines technologies such as quantumdomain (QD) multi-input multi-output, QD non-orthogonal multiple access, quantum secure direct communication, QD resource allocation, QD routing, and QD artificial intelligence.<n>The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - Quantum Internet: The Future of Internetworking [16.313110394211154]
The purpose of a quantum Internet is to enable applications that are fundamentally out of reach for the classical Internet.
This chapter aims to present the main concepts, challenges, and opportunities for research in quantum information, quantum computing and quantum networking.
arXiv Detail & Related papers (2023-04-30T23:17:47Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.