Efficient Blockchain-based Steganography via Backcalculating Generative Adversarial Network
- URL: http://arxiv.org/abs/2506.16023v1
- Date: Thu, 19 Jun 2025 04:43:41 GMT
- Title: Efficient Blockchain-based Steganography via Backcalculating Generative Adversarial Network
- Authors: Zhuo Chen, Jialing He, Jiacheng Wang, Zehui Xiong, Tao Xiang, Liehuang Zhu, Dusit Niyato,
- Abstract summary: We propose a generic blockchain-based steganography framework (GBSF)<n>The sender generates the required fields such as amount and fees, where the additional covert data is embedded to enhance the channel capacity.<n>Based on GBSF, we design a reversible generative adversarial network (R-GAN)<n>We propose R-GAN with Counter-intuitive data preprocessing and Custom activation functions, namely CCR-GAN.
- Score: 105.47203971578871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blockchain-based steganography enables data hiding via encoding the covert data into a specific blockchain transaction field. However, previous works focus on the specific field-embedding methods while lacking a consideration on required field-generation embedding. In this paper, we propose a generic blockchain-based steganography framework (GBSF). The sender generates the required fields such as amount and fees, where the additional covert data is embedded to enhance the channel capacity. Based on GBSF, we design a reversible generative adversarial network (R-GAN) that utilizes the generative adversarial network with a reversible generator to generate the required fields and encode additional covert data into the input noise of the reversible generator. We then explore the performance flaw of R-GAN. To further improve the performance, we propose R-GAN with Counter-intuitive data preprocessing and Custom activation functions, namely CCR-GAN. The counter-intuitive data preprocessing (CIDP) mechanism is used to reduce decoding errors in covert data, while it incurs gradient explosion for model convergence. The custom activation function named ClipSigmoid is devised to overcome the problem. Theoretical justification for CIDP and ClipSigmoid is also provided. We also develop a mechanism named T2C, which balances capacity and concealment. We conduct experiments using the transaction amount of the Bitcoin mainnet as the required field to verify the feasibility. We then apply the proposed schemes to other transaction fields and blockchains to demonstrate the scalability. Finally, we evaluate capacity and concealment for various blockchains and transaction fields and explore the trade-off between capacity and concealment. The results demonstrate that R-GAN and CCR-GAN are able to enhance the channel capacity effectively and outperform state-of-the-art works.
Related papers
- Channel Fingerprint Construction for Massive MIMO: A Deep Conditional Generative Approach [65.47969413708344]
We introduce the concept of CF twins and design a conditional generative diffusion model (CGDM)<n>We employ a variational inference technique to derive the evidence lower bound (ELBO) for the log-marginal distribution of the observed fine-grained CF conditioned on the coarse-grained CF.<n>We show that the proposed approach exhibits significant improvement in reconstruction performance compared to the baselines.
arXiv Detail & Related papers (2025-05-12T01:36:06Z) - Scalable Zero-Knowledge Proofs for Verifying Cryptographic Hashing in Blockchain Applications [16.72979347045808]
Zero-knowledge proofs (ZKPs) have emerged as a promising solution to address the scalability challenges in modern blockchain systems.
This study proposes a methodology for generating and verifying ZKPs to ensure the computational integrity of cryptographic hashing.
arXiv Detail & Related papers (2024-07-03T21:19:01Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - Enhanced Security and Efficiency in Blockchain with Aggregated Zero-Knowledge Proof Mechanisms [15.034624246970154]
Current approaches to data verification in blockchain systems face challenges in terms of efficiency and computational overhead.
This study proposes an innovative aggregation scheme for Zero-Knowledge Proofs within the structure of Merkle Trees.
We develop a system that significantly reduces the size of the proof and the computational resources needed for its generation and verification.
arXiv Detail & Related papers (2024-02-06T09:26:46Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
The paper analyzes a real-world dataset of Bitcoin transactions represented as a directed graph network through various techniques.
It shows that the neural network types known as Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) are a promising AML/CFT solution.
arXiv Detail & Related papers (2022-06-07T16:22:55Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
Privacy-preserving inference of transformer models is on the demand of cloud service users.
We introduce $textitTHE-X$, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models.
arXiv Detail & Related papers (2022-06-01T03:49:18Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
Phishing scam detection methods will protect possible victims and build a healthier blockchain ecosystem.
We defined the transaction pattern graphs for users and transformed the phishing scam detection into a graph classification task.
The proposed multi-channel graph classification model (MCGC) is more able to detect potential phishing by extracting the transaction pattern features of the target users.
arXiv Detail & Related papers (2021-08-19T02:59:55Z) - Identity Inference on Blockchain using Graph Neural Network [5.5927440285709835]
Identity inference, which aims to make a preliminary inference about account identity, plays a significant role in blockchain security.
We present a novel approach to analyze user's behavior from the perspective of the transaction subgraph, which naturally transforms the identity inference task into a graph classification pattern.
We also propose a generic end-to-end graph neural network model, named $textI2 textBGNN$, which can accept subgraph as input and learn a function mapping the transaction subgraph pattern to account identity.
arXiv Detail & Related papers (2021-04-14T00:15:38Z) - High-Capacity Expert Binary Networks [56.87581500474093]
Network binarization is a promising hardware-aware direction for creating efficient deep models.
Despite its memory and computational advantages, reducing the accuracy gap between binary models and their real-valued counterparts remains an unsolved challenging research problem.
We propose Expert Binary Convolution, which, for the first time, tailors conditional computing to binary networks by learning to select one data-specific expert binary filter at a time conditioned on input features.
arXiv Detail & Related papers (2020-10-07T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.