Identity Inference on Blockchain using Graph Neural Network
- URL: http://arxiv.org/abs/2104.06559v1
- Date: Wed, 14 Apr 2021 00:15:38 GMT
- Title: Identity Inference on Blockchain using Graph Neural Network
- Authors: Jie Shen, Jiajun Zhou, Yunyi Xie, Shanqing Yu, and Qi Xuan
- Abstract summary: Identity inference, which aims to make a preliminary inference about account identity, plays a significant role in blockchain security.
We present a novel approach to analyze user's behavior from the perspective of the transaction subgraph, which naturally transforms the identity inference task into a graph classification pattern.
We also propose a generic end-to-end graph neural network model, named $textI2 textBGNN$, which can accept subgraph as input and learn a function mapping the transaction subgraph pattern to account identity.
- Score: 5.5927440285709835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The anonymity of blockchain has accelerated the growth of illegal activities
and criminal behaviors on cryptocurrency platforms. Although decentralization
is one of the typical characteristics of blockchain, we urgently call for
effective regulation to detect these illegal behaviors to ensure the safety and
stability of user transactions. Identity inference, which aims to make a
preliminary inference about account identity, plays a significant role in
blockchain security. As a common tool, graph mining technique can effectively
represent the interactive information between accounts and be used for identity
inference. However, existing methods cannot balance scalability and end-to-end
architecture, resulting high computational consumption and weak feature
representation. In this paper, we present a novel approach to analyze user's
behavior from the perspective of the transaction subgraph, which naturally
transforms the identity inference task into a graph classification pattern and
effectively avoids computation in large-scale graph. Furthermore, we propose a
generic end-to-end graph neural network model, named $\text{I}^2 \text{BGNN}$,
which can accept subgraph as input and learn a function mapping the transaction
subgraph pattern to account identity, achieving de-anonymization. Extensive
experiments on EOSG and ETHG datasets demonstrate that the proposed method
achieve the state-of-the-art performance in identity inference.
Related papers
- The Kosmosis Use-Case of Crypto Rug Pull Detection and Prevention [0.0]
Current methods to prevent crypto asset fraud are based on the analysis of transaction graphs within blockchain networks.
We propose the Kosmosis approach, which aims to incrementally construct a knowledge graph as new blockchain and social media data become available.
arXiv Detail & Related papers (2024-05-30T07:17:57Z) - Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection [3.877894934465948]
Bitcoin has become one of the primary global platforms for cryptocurrency, playing an important role in promoting the diversification of the financial ecosystem.
Previous regulatory methods usually detect malicious accounts through feature engineering or large-scale transaction graph mining.
We propose an Transaction Graph Compression method named TGC4Eth, which assists malicious detection by lightweighting both features and topology of the transaction graph.
arXiv Detail & Related papers (2024-05-14T02:21:20Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Chainlet Orbits: Topological Address Embedding for the Bitcoin
Blockchain [15.099255988459602]
Rise of cryptocurrencies like Bitcoin, which enable transactions with a degree of pseudonymity, has led to a surge in various illicit activities.
We introduce an effective solution called Chainlet Orbits to embed Bitcoin addresses by leveraging their topological characteristics in transactions.
Our approach enables the use of interpretable and explainable machine learning models in as little as 15 minutes for most days on the Bitcoin transaction network.
arXiv Detail & Related papers (2023-05-18T21:16:59Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
The paper analyzes a real-world dataset of Bitcoin transactions represented as a directed graph network through various techniques.
It shows that the neural network types known as Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) are a promising AML/CFT solution.
arXiv Detail & Related papers (2022-06-07T16:22:55Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
Phishing scam detection methods will protect possible victims and build a healthier blockchain ecosystem.
We defined the transaction pattern graphs for users and transformed the phishing scam detection into a graph classification task.
The proposed multi-channel graph classification model (MCGC) is more able to detect potential phishing by extracting the transaction pattern features of the target users.
arXiv Detail & Related papers (2021-08-19T02:59:55Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.