A Scalable Factorization Approach for High-Order Structured Tensor Recovery
- URL: http://arxiv.org/abs/2506.16032v1
- Date: Thu, 19 Jun 2025 05:07:07 GMT
- Title: A Scalable Factorization Approach for High-Order Structured Tensor Recovery
- Authors: Zhen Qin, Michael B. Wakin, Zhihui Zhu,
- Abstract summary: decompositions, which represent an $N$-order tensor using approximately $N$ factors of much smaller dimensions, can significantly reduce the number of parameters.<n>A computationally memory-efficient approach to these problems is to optimize directly over factors using local algorithms.<n>We present a unified framework for factorization approach to solving various tensor decomposition problems.
- Score: 30.876260188209105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor decompositions, which represent an $N$-order tensor using approximately $N$ factors of much smaller dimensions, can significantly reduce the number of parameters. This is particularly beneficial for high-order tensors, as the number of entries in a tensor grows exponentially with the order. Consequently, they are widely used in signal recovery and data analysis across domains such as signal processing, machine learning, and quantum physics. A computationally and memory-efficient approach to these problems is to optimize directly over the factors using local search algorithms such as gradient descent, a strategy known as the factorization approach in matrix and tensor optimization. However, the resulting optimization problems are highly nonconvex due to the multiplicative interactions between factors, posing significant challenges for convergence analysis and recovery guarantees. In this paper, we present a unified framework for the factorization approach to solving various tensor decomposition problems. Specifically, by leveraging the canonical form of tensor decompositions--where most factors are constrained to be orthonormal to mitigate scaling ambiguity--we apply Riemannian gradient descent (RGD) to optimize these orthonormal factors on the Stiefel manifold. Under a mild condition on the loss function, we establish a Riemannian regularity condition for the factorized objective and prove that RGD converges to the ground-truth tensor at a linear rate when properly initialized. Notably, both the initialization requirement and the convergence rate scale polynomially rather than exponentially with $N$, improving upon existing results for Tucker and tensor-train format tensors.
Related papers
- Score-Based Model for Low-Rank Tensor Recovery [49.158601255093416]
Low-rank tensor decompositions (TDs) provide an effective framework for multiway data analysis.<n>Traditional TD methods rely on predefined structural assumptions, such as CP or Tucker decompositions.<n>We propose a score-based model that eliminates the need for predefined structural or distributional assumptions.
arXiv Detail & Related papers (2025-06-27T15:05:37Z) - TensorGRaD: Tensor Gradient Robust Decomposition for Memory-Efficient Neural Operator Training [91.8932638236073]
We introduce textbfTensorGRaD, a novel method that directly addresses the memory challenges associated with large-structured weights.<n>We show that sparseGRaD reduces total memory usage by over $50%$ while maintaining and sometimes even improving accuracy.
arXiv Detail & Related papers (2025-01-04T20:51:51Z) - Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition [27.29463801531576]
We study the theoretical and algorithmic aspects of the TT-based ToT regression model.<n>We propose two algorithms to efficiently find solutions to constrained error bounds.<n>We establish the linear convergence rate of both IHT and RGD.
arXiv Detail & Related papers (2024-06-10T03:51:38Z) - Guaranteed Nonconvex Factorization Approach for Tensor Train Recovery [30.876260188209105]
We provide the first convergence guarantee for the factorization approach.<n>We optimize over the so-called left-orthogonal TT format.<n>We prove that RGD can reliably recover the ground truth at a linear rate.
arXiv Detail & Related papers (2024-01-05T01:17:16Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Decomposition of linear tensor transformations [0.0]
The aim of this paper is to develop a mathematical framework for exact tensor decomposition.
In the paper three different problems will be carried out to derive.
arXiv Detail & Related papers (2023-09-14T16:14:38Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Error Analysis of Tensor-Train Cross Approximation [88.83467216606778]
We provide accuracy guarantees in terms of the entire tensor for both exact and noisy measurements.
Results are verified by numerical experiments, and may have important implications for the usefulness of cross approximations for high-order tensors.
arXiv Detail & Related papers (2022-07-09T19:33:59Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
Preconditioning is a highly effective step for any iterative method involving matrix-vector multiplication.
We prove that preconditioning has an additional benefit that has been previously unexplored.
It simultaneously can reduce variance at essentially negligible cost.
arXiv Detail & Related papers (2021-07-01T06:43:11Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
A fundamental task is to faithfully recover tensors from highly incomplete measurements.
We develop an algorithm to directly recover the tensor factors in the Tucker decomposition.
We show that it provably converges at a linear independent rate of the ground truth tensor for two canonical problems.
arXiv Detail & Related papers (2021-04-29T17:44:49Z) - Robust Tensor Principal Component Analysis: Exact Recovery via
Deterministic Model [5.414544833902815]
This paper proposes a new method to analyze Robust tensor principal component analysis (RTPCA)
It is based on the recently developed tensor-tensor product and tensor singular value decomposition (t-SVD)
arXiv Detail & Related papers (2020-08-05T16:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.