Observation of photonic dynamics in dissipative quantum Rabi models
- URL: http://arxiv.org/abs/2506.16062v1
- Date: Thu, 19 Jun 2025 06:40:16 GMT
- Title: Observation of photonic dynamics in dissipative quantum Rabi models
- Authors: Wen Ning, Ri-Hua Zheng, Jia-Hao Lü, Ken Chen, Xin Zhu, Fan Wu, Zhen-Biao Yang, Shi-Biao Zheng,
- Abstract summary: An open quantum Rabi model (QRM) with a strong photonic dissipation has not been experimentally explored.<n>We present the first experimental demonstration of such an open system in circuit QED.<n>The results demonstrate that the system's behavior is significantly modified by photonic dissipation.
- Score: 5.792293600651519
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The quantum Rabi model (QRM), composed of a qubit interacting with a quantized photonic field, is a cornerstone of quantum optics. The QRM with dominant unitary dynamics has been demonstrated in circuit quantum electrodynamics (QED) systems, but an open QRM with a strong photonic dissipation has not been experimentally explored. We here present the first experimental demonstration of such an open system in circuit QED, featuring a controlled competition between the coherent qubit-field interaction and the photonic dissipation. We map out the photon number distributions of the dissipative resonator for different coupling strengths in the steady state. We further observe the variation of the photon number during the system's evolution toward the steady state with fixed control parameters. The results demonstrate that the system's behavior is significantly modified by photonic dissipation.
Related papers
- Entanglement and Coherence Dynamics in Photonic Quantum Memristors [0.0]
We show that a photonic quantum memristor (PQM) displays memristive dynamics on its quantum coherence.<n>We build and run a circuit-model of the PQM on a real qubit-based quantum computer (IBM-Q)
arXiv Detail & Related papers (2024-09-13T16:52:05Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.<n>We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.<n>Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Stochastic approach to evolution of a quantum system interacting with a
wave packet in squeezed number state [0.0]
We determine filtering and master equations for a quantum system interacting with wave packet of light in a continuous-mode squeezed number state.
We formulate the problem of conditional evolution of a quantum system making use of model of repeated interactions and measurements.
arXiv Detail & Related papers (2023-03-21T19:42:15Z) - Regimes of Cavity-QED under Incoherent Excitation: From Weak to Deep
Strong Coupling [0.0]
A two-level atom interacting with a quantized single-mode electromagnetic field is described by the quantum Rabi model (QRM)
Here, we study the photon flux emission rate of this system under the incoherent excitation of the two-level atom for any light-matter interaction strength.
arXiv Detail & Related papers (2021-12-16T14:36:54Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.