Single-shot high-resolution spectroscopy of single-photon-level optical pulses using a virtually imaged phased-array and single-photon avalanche diode array
- URL: http://arxiv.org/abs/2506.16108v2
- Date: Mon, 23 Jun 2025 02:08:47 GMT
- Title: Single-shot high-resolution spectroscopy of single-photon-level optical pulses using a virtually imaged phased-array and single-photon avalanche diode array
- Authors: Yuki Nagoro, Hidehito Sato, Hiroyuki Tezuka, Tomoyuki Horikiri,
- Abstract summary: Single-shot high-resolution spectroscopy at the single-photon-level has emerged as a promising measurement technique.<n>We propose a single-shot high-resolution single-photon spectroscopy system that integrates high-resolution frequency-to-spatial mode mapping.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-shot high-resolution spectroscopy at the single-photon-level has emerged as a promising measurement technique, enabling novel observations and evaluations that were previously challenging. This technology is particularly effective for spectroscopic applications aimed at realizing frequency-multiplexed quantum repeaters. In this study, we propose a single-shot high-resolution single-photon spectroscopy system that integrates high-resolution frequency-to-spatial mode mapping using a virtually imaged phased-array (VIPA) and high-precision spatial mode detection using a single-photon avalanche diode (SPAD) array. We experimentally demonstrated the principle of this system using weak coherent pulses with a frequency mode interval of 120 MHz. This interval closely matches the minimum frequency mode spacing of the atomic frequency comb quantum memory with the Pr$^{3+}$-ion-doped Y$_2$SiO$_5$ crystal. By applying the proposed system, we expect to maximize the multiplexing capability of frequency-multiplexed quantum repeater schemes utilizing such quantum memories.
Related papers
- Broadband Fourier transform spectroscopy of quantum emitters photoluminescence with sub-nanosecond temporal resolution [0.6127128845694289]
We experimentally demonstrate that the system enables spectroscopy of quantum emitters over a broad wavelength interval from the near-infrared to the telecom range.<n>The high temporal resolution of single-photon detectors, which can be on the order of tens of picoseconds, enables the monitoring of spin-dependent spectral changes on sub-nanosecond timescales.
arXiv Detail & Related papers (2025-04-21T17:38:20Z) - Observation of Subnatural-Linewidth Biphotons In a Two-Level Atomic Ensemble [0.0]
Biphotons and single photons with narrow bandwidths are essential to the realization of long-distance quantum communication (LDQC) and linear optical quantum computing (LOQC)<n>In this Letter, we manipulate the biphoton wave functions of the spontaneous four-wave mixing in a two-level atomic ensemble with a single-laser pump scheme.<n>Our innovative experimental approach enables the generation of biphotons with a sub-MHz bandwidth of 0.36 MHz, a record spectral brightness of $2.28times107$$rm s-1rm mW-1rm MHz-1$, and
arXiv Detail & Related papers (2025-01-21T06:00:05Z) - Capturing the spectrotemporal structure of a biphoton wave packet with delay-line-anode single-photon imagers [0.0]
We present a novel photon-detection technique to achieve a significantly more efficient measurement of frequency-entangled biphoton.
Our technique paves the way for all experiments in multi-mode quantum science requiring coincidence measurement.
arXiv Detail & Related papers (2024-07-23T03:24:47Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Super-resolution of ultrafast pulses via spectral inversion [0.0]
We experimentally demonstrate a spectroscopic super-resolution method aimed at broadband light (10s to 100s of GHz)
We study the paradigmatic problem of estimating a small separation between two incoherent spectral features of equal brightness, with a small number of photons per coherence time.
The setup is based on an actively stabilized Mach-Zehnder-type interferometer with electro-optic time lenses and passive spectral dispersers implementing the inversion.
arXiv Detail & Related papers (2024-03-18T12:21:37Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Microwave multiphoton conversion via coherently driven permanent dipole
systems [68.8204255655161]
We investigate a leaking single-mode quantized cavity field coupled with a resonantly driven two-level system possessing permanent dipoles.
The frequencies of the interacting subsystems are being considered very different, e.g., microwave ranges for the cavity and optical domains for the frequency of the two-level emitter, respectively.
arXiv Detail & Related papers (2020-08-12T16:20:44Z) - Position Sensitive Response of a Single-Pixel Large-Area SNSPD [58.720142291102135]
Superconducting nanowire single photon detectors (SNSPDs) are typically used as single-mode-fiber-coupled single-pixel detectors.
Large area detectors are increasingly critical for applications ranging from microscopy to free-space quantum communications.
We explore changes in the rising edge of the readout pulse for large-area SNSPDs as a function of the bias current, optical spot size on the detector, and number of photons per pulse.
arXiv Detail & Related papers (2020-05-29T23:33:11Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Quantum Enhanced Measurement of an Optical Frequency Comb [0.0]
Measuring the spectral properties of an optical frequency comb is among the most fundamental tasks of precision metrology.
We demonstrate here single shot multi parameter estimation at and beyond the standard quantum limit.
Using a quantum frequency comb that consists of multiple squeezed states in a family of Hermite-Gaussian spectral/temporal modes, the signal-to-noise ratios of the mean energy and the central frequency measurements surpass the shot-noise limit by around 19% and 15%, respectively.
arXiv Detail & Related papers (2020-03-12T14:59:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.