Co-Speech Gesture and Facial Expression Generation for Non-Photorealistic 3D Characters
- URL: http://arxiv.org/abs/2506.16159v1
- Date: Thu, 19 Jun 2025 09:14:50 GMT
- Title: Co-Speech Gesture and Facial Expression Generation for Non-Photorealistic 3D Characters
- Authors: Taisei Omine, Naoyuki Kawabata, Fuminori Homma,
- Abstract summary: This study proposes methods for expressing emotions, including exaggerated expressions unique to non-photorealistic characters.<n>A user study demonstrated significant improvements across multiple aspects when compared to existing research.
- Score: 1.0923877073891446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of conversational AI, research on bodily expressions, including gestures and facial expressions, has also progressed. However, many existing studies focus on photorealistic avatars, making them unsuitable for non-photorealistic characters, such as those found in anime. This study proposes methods for expressing emotions, including exaggerated expressions unique to non-photorealistic characters, by utilizing expression data extracted from comics and dialogue-specific semantic gestures. A user study demonstrated significant improvements across multiple aspects when compared to existing research.
Related papers
- FaceSpeak: Expressive and High-Quality Speech Synthesis from Human Portraits of Different Styles [29.185409608539747]
Vision-driven Text-to-speech (TTS) scholars grounded their investigations on real-person faces.<n>We introduce a novel FaceSpeak approach, which extracts salient identity characteristics and emotional representations from a wide variety of image styles.<n>It mitigates the extraneous information, resulting in synthesized speech closely aligned with a character's persona.
arXiv Detail & Related papers (2025-01-02T02:00:15Z) - When Words Smile: Generating Diverse Emotional Facial Expressions from Text [72.19705878257204]
We introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics.<n>Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent.
arXiv Detail & Related papers (2024-12-03T15:39:05Z) - Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
Existing facial expression recognition methods typically fine-tune a pre-trained visual encoder using discrete labels.
We observe that the rich knowledge in text embeddings, generated by vision-language models, is a promising alternative for learning discriminative facial expression representations.
We propose a novel knowledge-enhanced FER method with an emotional-to-neutral transformation.
arXiv Detail & Related papers (2024-09-13T07:28:57Z) - Towards Localized Fine-Grained Control for Facial Expression Generation [54.82883891478555]
Humans, particularly their faces, are central to content generation due to their ability to convey rich expressions and intent.
Current generative models mostly generate flat neutral expressions and characterless smiles without authenticity.
We propose the use of AUs (action units) for facial expression control in face generation.
arXiv Detail & Related papers (2024-07-25T18:29:48Z) - CSTalk: Correlation Supervised Speech-driven 3D Emotional Facial Animation Generation [13.27632316528572]
Speech-driven 3D facial animation technology has been developed for years, but its practical application still lacks expectations.
Main challenges lie in data limitations, lip alignment, and the naturalness of facial expressions.
This paper proposes a method called CSTalk that models the correlations among different regions of facial movements and supervises the training of the generative model to generate realistic expressions.
arXiv Detail & Related papers (2024-04-29T11:19:15Z) - Impressions: Understanding Visual Semiotics and Aesthetic Impact [66.40617566253404]
We present Impressions, a novel dataset through which to investigate the semiotics of images.
We show that existing multimodal image captioning and conditional generation models struggle to simulate plausible human responses to images.
This dataset significantly improves their ability to model impressions and aesthetic evaluations of images through fine-tuning and few-shot adaptation.
arXiv Detail & Related papers (2023-10-27T04:30:18Z) - GaFET: Learning Geometry-aware Facial Expression Translation from
In-The-Wild Images [55.431697263581626]
We introduce a novel Geometry-aware Facial Expression Translation framework, which is based on parametric 3D facial representations and can stably decoupled expression.
We achieve higher-quality and more accurate facial expression transfer results compared to state-of-the-art methods, and demonstrate applicability of various poses and complex textures.
arXiv Detail & Related papers (2023-08-07T09:03:35Z) - ViNTER: Image Narrative Generation with Emotion-Arc-Aware Transformer [59.05857591535986]
We propose a model called ViNTER to generate image narratives that focus on time series representing varying emotions as "emotion arcs"
We present experimental results of both manual and automatic evaluations.
arXiv Detail & Related papers (2022-02-15T10:53:08Z) - Neural Emotion Director: Speech-preserving semantic control of facial
expressions in "in-the-wild" videos [31.746152261362777]
We introduce a novel deep learning method for photo-realistic manipulation of the emotional state of actors in "in-the-wild" videos.
The proposed method is based on a parametric 3D face representation of the actor in the input scene that offers a reliable disentanglement of the facial identity from the head pose and facial expressions.
It then uses a novel deep domain translation framework that alters the facial expressions in a consistent and plausible manner, taking into account their dynamics.
arXiv Detail & Related papers (2021-12-01T15:55:04Z) - Real-time Facial Expression Recognition "In The Wild'' by Disentangling
3D Expression from Identity [6.974241731162878]
This paper proposes a novel method for human emotion recognition from a single RGB image.
We construct a large-scale dataset of facial videos, rich in facial dynamics, identities, expressions, appearance and 3D pose variations.
Our proposed framework runs at 50 frames per second and is capable of robustly estimating parameters of 3D expression variation.
arXiv Detail & Related papers (2020-05-12T01:32:55Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
We present a novel Fine-grained Facial Expression Database - F2ED.
It includes more than 200k images with 54 facial expressions from 119 persons.
Considering the phenomenon of uneven data distribution and lack of samples is common in real-world scenarios, we evaluate several tasks of few-shot expression learning.
We propose a unified task-driven framework - Compositional Generative Adversarial Network (Comp-GAN) learning to synthesize facial images.
arXiv Detail & Related papers (2020-01-17T03:26:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.