From Coarse to Continuous: Progressive Refinement Implicit Neural Representation for Motion-Robust Anisotropic MRI Reconstruction
- URL: http://arxiv.org/abs/2506.16210v2
- Date: Tue, 24 Jun 2025 20:48:10 GMT
- Title: From Coarse to Continuous: Progressive Refinement Implicit Neural Representation for Motion-Robust Anisotropic MRI Reconstruction
- Authors: Zhenxuan Zhang, Lipei Zhang, Yanqi Cheng, Zi Wang, Fanwen Wang, Haosen Zhang, Yue Yang, Yinzhe Wu, Jiahao Huang, Angelica I Aviles-Rivero, Zhifan Gao, Guang Yang, Peter J. Lally,
- Abstract summary: In MRI, slice-to-volume reconstruction is critical for recovering consistent 3D brain volumes from 2D slices.<n>We propose a progressive refinement implicit neural representation framework (PR-INR)<n>Our PR-INR unifies motion correction, structural refinement, and volumetric synthesis within a geometry-aware coordinate space.
- Score: 15.340881123379567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In motion-robust magnetic resonance imaging (MRI), slice-to-volume reconstruction is critical for recovering anatomically consistent 3D brain volumes from 2D slices, especially under accelerated acquisitions or patient motion. However, this task remains challenging due to hierarchical structural disruptions. It includes local detail loss from k-space undersampling, global structural aliasing caused by motion, and volumetric anisotropy. Therefore, we propose a progressive refinement implicit neural representation (PR-INR) framework. Our PR-INR unifies motion correction, structural refinement, and volumetric synthesis within a geometry-aware coordinate space. Specifically, a motion-aware diffusion module is first employed to generate coarse volumetric reconstructions that suppress motion artifacts and preserve global anatomical structures. Then, we introduce an implicit detail restoration module that performs residual refinement by aligning spatial coordinates with visual features. It corrects local structures and enhances boundary precision. Further, a voxel continuous-aware representation module represents the image as a continuous function over 3D coordinates. It enables accurate inter-slice completion and high-frequency detail recovery. We evaluate PR-INR on five public MRI datasets under various motion conditions (3% and 5% displacement), undersampling rates (4x and 8x) and slice resolutions (scale = 5). Experimental results demonstrate that PR-INR outperforms state-of-the-art methods in both quantitative reconstruction metrics and visual quality. It further shows generalization and robustness across diverse unseen domains.
Related papers
- SUFFICIENT: A scan-specific unsupervised deep learning framework for high-resolution 3D isotropic fetal brain MRI reconstruction [7.268308489093152]
We propose an unsupervised iterative SVR-SRR framework for isotropic HR volume reconstruction.<n>A decoding network embedded within a deep image prior framework is incorporated with a comprehensive image degradation model to produce the high-resolution (HR) volume.<n>Experiments conducted on large-magnitude motion-corrupted simulation data and clinical data demonstrate the superior performance of the proposed framework.
arXiv Detail & Related papers (2025-05-23T04:53:59Z) - MoRe-3DGSMR: Motion-resolved reconstruction framework for free-breathing pulmonary MRI based on 3D Gaussian representation [5.166993855950655]
This study presents an unsupervised, motion-resolved reconstruction framework for high-resolution, free-breathing pulmonary magnetic resonance imaging (MRI)<n>The proposed method leverages 3DGS to address the challenges of motion-resolved 3D isotropic pulmonary MRI reconstruction.<n>It achieves superior image quality, reflected by higher signal-to-noise ratio and contrast-to-noise ratio.
arXiv Detail & Related papers (2025-05-08T05:41:46Z) - 4DRGS: 4D Radiative Gaussian Splatting for Efficient 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images [49.170407434313475]
Existing methods often produce suboptimal results or require excessive computation time.<n>We propose 4D radiative Gaussian splatting (4DRGS) to achieve high-quality reconstruction efficiently.<n>4DRGS achieves impressive results in 5 minutes training, which is 32x faster than the state-of-the-art method.
arXiv Detail & Related papers (2024-12-17T13:51:56Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
We introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction.<n>We propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling.<n>We contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-25T08:23:38Z) - SMORE: Simultaneous Map and Object REconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.<n>We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
Cryo-electron microscopy (cryo-EM) allows for the high-resolution reconstruction of 3D structures of proteins and other biomolecules.
It is still challenging to reconstruct the continuous motions of 3D structures from noisy and randomly oriented 2D cryo-EM images.
We propose CryoFormer, a new approach for continuous heterogeneous cryo-EM reconstruction.
arXiv Detail & Related papers (2023-03-28T18:59:17Z) - DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction
via A Structure-Specific Generative Method [12.26150675728958]
We propose an end-to-end latent-space-based framework, DeepRecon, that generates multiple clinically essential outcomes.
Our method identifies the optimal latent representation of the cine image that contains accurate semantic information for cardiac structures.
In particular, our model jointly generates synthetic images with accurate semantic information and segmentation of the cardiac structures.
arXiv Detail & Related papers (2022-06-14T20:46:11Z) - Motion Correction and Volumetric Reconstruction for Fetal Functional
Magnetic Resonance Imaging Data [3.690756997172894]
Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain.
Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint.
We propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction.
arXiv Detail & Related papers (2022-02-11T19:11:16Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.