Large Language Models in Argument Mining: A Survey
- URL: http://arxiv.org/abs/2506.16383v5
- Date: Mon, 04 Aug 2025 04:51:04 GMT
- Title: Large Language Models in Argument Mining: A Survey
- Authors: Hao Li, Viktor Schlegel, Yizheng Sun, Riza Batista-Navarro, Goran Nenadic,
- Abstract summary: Argument Mining (AM) focuses on extracting argumentative structures from text.<n>The advent of Large Language Models (LLMs) has profoundly transformed AM, enabling advanced in-context learning.<n>This survey systematically synthesizes recent advancements in LLM-driven AM.
- Score: 15.041650203089057
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Argument Mining (AM), a critical subfield of Natural Language Processing (NLP), focuses on extracting argumentative structures from text. The advent of Large Language Models (LLMs) has profoundly transformed AM, enabling advanced in-context learning, prompt-based generation, and robust cross-domain adaptability. This survey systematically synthesizes recent advancements in LLM-driven AM. We provide a concise review of foundational theories and annotation frameworks, alongside a meticulously curated catalog of datasets. A key contribution is our comprehensive taxonomy of AM subtasks, elucidating how contemporary LLM techniques -- such as prompting, chain-of-thought reasoning, and retrieval augmentation -- have reconfigured their execution. We further detail current LLM architectures and methodologies, critically assess evaluation practices, and delineate pivotal challenges including long-context reasoning, interpretability, and annotation bottlenecks. Conclusively, we highlight emerging trends and propose a forward-looking research agenda for LLM-based computational argumentation, aiming to strategically guide researchers in this rapidly evolving domain.
Related papers
- Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities [62.05713042908654]
This paper provides a review of advances in Large Language Models (LLMs) alignment through the lens of inverse reinforcement learning (IRL)<n>We highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift.
arXiv Detail & Related papers (2025-07-17T14:22:24Z) - Mapping the Minds of LLMs: A Graph-Based Analysis of Reasoning LLM [11.181783720439563]
Large Language Models (LLMs) display sophisticated reasoning abilities via extended Chain-of-Thought (CoT) generation.<n>RLMs often demonstrate counterintuitive and unstable behaviors, such as performance degradation under few-shot prompting.<n>We introduce a unified graph-based analytical framework for better modeling the reasoning processes of RLMs.
arXiv Detail & Related papers (2025-05-20T03:54:57Z) - How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.<n>We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.<n>These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.<n>This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures ethical coherence and alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Integration and Adaptation, which
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models [33.13238566815798]
Large Language Models (LLMs) have sparked significant research interest in leveraging them to tackle complex reasoning tasks.<n>Recent studies demonstrate that encouraging LLMs to "think" with more tokens during test-time inference can significantly boost reasoning accuracy.<n>The introduction of OpenAI's o1 series marks a significant milestone in this research direction.
arXiv Detail & Related papers (2025-01-16T17:37:58Z) - Argumentation Computation with Large Language Models : A Benchmark Study [6.0682923348298194]
Large language models (LLMs) have made significant advancements in neuro-symbolic computing.<n>We aim to investigate the capability of LLMs in determining the extensions of various abstract argumentation semantics.
arXiv Detail & Related papers (2024-12-21T18:23:06Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
Large language models (LLMs) have demonstrated impressive capabilities in understanding context and generating natural language.
This work aims to embark on an assessment of LLMs, such as ChatGPT, Flan models, and LLaMA2 models, in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-11-15T15:12:15Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.