論文の概要: Consumer-friendly EEG-based Emotion Recognition System: A Multi-scale Convolutional Neural Network Approach
- arxiv url: http://arxiv.org/abs/2506.16448v1
- Date: Thu, 19 Jun 2025 16:33:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.165398
- Title: Consumer-friendly EEG-based Emotion Recognition System: A Multi-scale Convolutional Neural Network Approach
- Title(参考訳): 消費者フレンドリーな脳波に基づく感情認識システム:マルチスケール畳み込みニューラルネットワークアプローチ
- Authors: Tri Duc Ly, Gia H. Ngo,
- Abstract要約: 脳波は脳内の電気生理学的信号を記録する非侵襲的で安全でリスクの低い方法である。
本稿では,マルチスケール畳み込みニューラルネットワークを用いた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 1.3812010983144802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: EEG is a non-invasive, safe, and low-risk method to record electrophysiological signals inside the brain. Especially with recent technology developments like dry electrodes, consumer-grade EEG devices, and rapid advances in machine learning, EEG is commonly used as a resource for automatic emotion recognition. With the aim to develop a deep learning model that can perform EEG-based emotion recognition in a real-life context, we propose a novel approach to utilize multi-scale convolutional neural networks to accomplish such tasks. By implementing feature extraction kernels with many ratio coefficients as well as a new type of kernel that learns key information from four separate areas of the brain, our model consistently outperforms the state-of-the-art TSception model in predicting valence, arousal, and dominance scores across many performance evaluation metrics.
- Abstract(参考訳): 脳波は脳内の電気生理学的信号を記録する非侵襲的で安全でリスクの低い方法である。
特に、ドライ電極、コンシューマグレードのEEGデバイス、機械学習の急速な進歩といった最近の技術開発において、EEGは自動感情認識のリソースとして一般的に使用されている。
本研究では,脳波に基づく感情認識を現実の文脈で実現可能な深層学習モデルを開発することを目的として,マルチスケール畳み込みニューラルネットワークを用いて課題を遂行する手法を提案する。
多くの比係数を持つ特徴抽出カーネルと、脳の4つの異なる領域から鍵情報を学習する新しいタイプのカーネルを実装することで、我々のモデルは、多くのパフォーマンス評価指標において、原子価、覚醒、支配率の予測において、最先端のTSセプションモデルより一貫して優れている。
関連論文リスト
- Hybrid Quantum Deep Learning Model for Emotion Detection using raw EEG Signal Analysis [0.0]
本研究は、感情認識のためのハイブリッド量子深層学習技術を提案する。
従来の脳波に基づく感情認識技術はノイズと高次元データ複雑さによって制限される。
このモデルは、リアルタイムアプリケーションと将来の研究におけるマルチクラス分類のために拡張される予定である。
論文 参考訳(メタデータ) (2024-11-19T17:44:04Z) - MEEG and AT-DGNN: Improving EEG Emotion Recognition with Music Introducing and Graph-based Learning [3.840859750115109]
音楽誘発脳波(EEG)記録のマルチモーダルコレクションであるMEEGデータセットについて述べる。
本稿では,脳波に基づく感情認識のための新しいフレームワークである動的グラフニューラルネットワーク(AT-DGNN)を用いた注意に基づく時間学習について紹介する。
論文 参考訳(メタデータ) (2024-07-08T01:58:48Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - A Convolutional Spiking Network for Gesture Recognition in
Brain-Computer Interfaces [0.8122270502556371]
脳信号に基づく手振り分類の例題問題に対して,簡単な機械学習に基づくアプローチを提案する。
本手法は脳波データとECoGデータの両方で異なる対象に一般化し,92.74-97.07%の範囲で精度が向上することを示した。
論文 参考訳(メタデータ) (2023-04-21T16:23:40Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) はユーザとシステム間の強力なコミュニケーションツールである。
近年の技術進歩は、脳波(EEG)に基づく翻訳医療用BCIへの関心が高まっている。
論文 参考訳(メタデータ) (2020-01-28T10:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。