論文の概要: An introduction to Causal Modelling
- arxiv url: http://arxiv.org/abs/2506.16486v2
- Date: Thu, 26 Jun 2025 06:46:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-27 13:31:57.717664
- Title: An introduction to Causal Modelling
- Title(参考訳): 因果モデリング入門
- Authors: Gauranga Kumar Baishya,
- Abstract要約: このチュートリアルは、潜在的な結果とグラフィカルな手法を統合することで、現代的な因果モデリングの簡潔な紹介を提供する。
明確な表記法、直観的な説明、応用研究者の実践例に重点を置いている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This tutorial provides a concise introduction to modern causal modeling by integrating potential outcomes and graphical methods. We motivate causal questions such as counterfactual reasoning under interventions and define binary treatments and potential outcomes. We discuss causal effect measures-including average treatment effects on the treated and on the untreated-and choices of effect scales for binary outcomes. We derive identification in randomized experiments under exchangeability and consistency, and extend to stratification and blocking designs. We present inverse probability weighting with propensity score estimation and robust inference via sandwich estimators. Finally, we introduce causal graphs, d-separation, the backdoor criterion, single-world intervention graphs, and structural equation models, showing how graphical and potential-outcome approaches complement each other. Emphasis is placed on clear notation, intuitive explanations, and practical examples for applied researchers.
- Abstract(参考訳): このチュートリアルは、潜在的な結果とグラフィカルな手法を統合することで、現代的な因果モデリングの簡潔な紹介を提供する。
我々は、介入による対実的推論などの因果的疑問を動機付け、二元的治療と潜在的な結果を定義する。
本稿では, 治療効果と非治療効果尺度の選択に対する平均治療効果を含む因果効果尺度について検討する。
我々は、交換性と整合性の下でランダム化実験において同定し、成層化およびブロッキング設計にまで拡張する。
サンドイッチ推定器を用いた逆確率重み付けと頑健な推定を行う。
最後に、因果グラフ、d-セパレーション、バックドア基準、シングルワールド介入グラフ、構造方程式モデルを導入し、グラフィカルおよび潜在的アウトカムアプローチがどのように補完するかを示す。
明確な表記法、直観的な説明、応用研究者の実践例に重点を置いている。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
この研究は、メカニズムのスパーシティ正則化(英語版)と呼ばれる、アンタングルメントの新たな原理を導入する。
本稿では,潜在要因を同時に学習することで,絡み合いを誘発する表現学習手法を提案する。
学習した因果グラフをスパースに規則化することにより、潜伏因子を復元できることを示す。
論文 参考訳(メタデータ) (2024-01-10T02:38:21Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Causal Analysis for Robust Interpretability of Neural Networks [0.2519906683279152]
我々は、事前学習されたニューラルネットワークの因果効果を捉えるための頑健な介入に基づく手法を開発した。
分類タスクで訓練された視覚モデルに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-15T18:37:24Z) - Feature selection in stratification estimators of causal effects:
lessons from potential outcomes, causal diagrams, and structural equations [0.456877715768796]
このアプローチは、多くの広く興奮された結果の根底にある基本的な統計現象を明らかにする。
本発表は,因果効果推定研究のための3つの方法論的伝統からの知見を組み合わせたものである。
論文 参考訳(メタデータ) (2022-09-23T04:20:50Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - A Meta Learning Approach to Discerning Causal Graph Structure [1.52292571922932]
分布の単純度を最適化することにより,変数間の因果方向を導出するためのメタラーニングの活用について検討する。
潜在変数を含むグラフ表現を導入し、より一般化性とグラフ構造表現を可能にする。
我々のモデルは、潜在共同設立者の影響にもかかわらず、複雑なグラフ構造の因果方向インジケータを学習することができる。
論文 参考訳(メタデータ) (2021-06-06T22:44:44Z) - Causal Autoregressive Flows [4.731404257629232]
自己回帰正規化フローの単純なファミリーと同定可能な因果モデルとの本質的な対応を強調した。
我々は、自己回帰フローアーキテクチャが、因果順序に類似した変数の順序を定義しているという事実を利用して、様々な因果推論タスクを実行するのに適していることを示す。
論文 参考訳(メタデータ) (2020-11-04T13:17:35Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。