Manifold Learning for Personalized and Label-Free Detection of Cardiac Arrhythmias
- URL: http://arxiv.org/abs/2506.16494v1
- Date: Thu, 19 Jun 2025 17:39:57 GMT
- Title: Manifold Learning for Personalized and Label-Free Detection of Cardiac Arrhythmias
- Authors: Amir Reza Vazifeh, Jason W. Fleischer,
- Abstract summary: We show that nonlinear dimensionality reduction (NLDR) can accommodate medically relevant features in ECG signals.<n>Using the MLII and V1 leads of the MIT-BIH dataset, we demonstrate that NLDR holds much promise for cardiac monitoring.
- Score: 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrocardiograms (ECGs) provide direct, non-invasive measurements of heart activity and are well-established tools for detecting and monitoring cardiovascular disease. However, manual ECG analysis can be time-consuming and prone to errors. Machine learning has emerged as a promising approach for automated heartbeat recognition and classification, but substantial variations in ECG signals make it challenging to develop generalizable models. ECG signals can vary widely across individuals and leads, while datasets often follow different labeling standards and may be biased, all of which greatly hinder supervised methods. Conventional unsupervised methods, e.g. principal component analysis, prioritize large (and often obvious) variances in the data and typically overlook subtle yet clinically relevant patterns. If labels are missing and/or variations are significant but small, both approaches fail. Here, we show that nonlinear dimensionality reduction (NLDR) can accommodate these issues and identify medically relevant features in ECG signals, with no need for training or prior information. Using the MLII and V1 leads of the MIT-BIH dataset, we demonstrate that t-distributed stochastic neighbor embedding and uniform manifold approximation and projection can discriminate individual recordings in mixed populations with >= 90% accuracy and distinguish different arrhythmias in individual patients with a median accuracy of 98.96% and a median F1-score of 91.02%. The results show that NLDR holds much promise for cardiac monitoring, including the limiting cases of single-lead ECG and the current 12-lead standard of care, and for personalized health care beyond cardiology.
Related papers
- Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Sensing Cardiac Health Across Scenarios and Devices: A Multi-Modal Foundation Model Pretrained on Heterogeneous Data from 1.7 Million Individuals [36.08910150609342]
We present a cardiac sensing foundation model (CSFM) that learns unified representations from vast, heterogeneous health records.<n>Our model is pretrained on an innovative multi-modal integration of data from multiple large-scale datasets.<n> CSFM consistently outperforms traditional one-modal-one-task approaches.
arXiv Detail & Related papers (2025-06-23T20:58:12Z) - FADE: Forecasting for Anomaly Detection on ECG [4.914228925573227]
The objective of this work is to propose a deep learning system, FADE, designed for normal ECG forecasting and anomaly detection.<n>FADE has been trained in a self-supervised manner with a novel morphological inspired loss function.<n>Using a novel distance function to compare forecasted ECG signals with actual sensor data, our method effectively identifies cardiac anomalies.
arXiv Detail & Related papers (2025-02-11T09:19:39Z) - Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.<n>Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.<n>In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.<n>Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Self-supervised Anomaly Detection Pretraining Enhances Long-tail ECG Diagnosis [32.37717219026923]
Current computer-aided ECG diagnostic systems struggle with the underdetection of rare but critical cardiac anomalies.
This study introduces a novel approach using self-supervised anomaly detection pretraining to address this limitation.
The anomaly detection model is specifically designed to detect and localize subtle deviations from normal cardiac patterns.
arXiv Detail & Related papers (2024-08-30T09:48:47Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling [11.617950008187366]
Photoplethysmography ( PPG) is a cost-effective and non-invasive technique that utilizes optical methods to measure cardiac physiology.
Here, we propose a subject-independent attention-based deep state-space model (ADSSM) to translate PPG signals to corresponding ECG waveforms.
arXiv Detail & Related papers (2023-09-27T03:07:46Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Weak Supervision for Affordable Modeling of Electrocardiogram Data [20.646500951182247]
Analysing electrocardiograms (ECGs) is an inexpensive and non-invasive, yet powerful way to diagnose heart disease.
ECG studies using Machine Learning to automatically detect abnormal heartbeats so far depend on large, manually annotated datasets.
We explore the use of multiple weak supervision sources to learn diagnostic models of abnormal heartbeats via human designeds.
arXiv Detail & Related papers (2022-01-09T06:08:05Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.