SAFER-D: A Self-Adaptive Security Framework for Distributed Computing Architectures
- URL: http://arxiv.org/abs/2506.16545v1
- Date: Thu, 19 Jun 2025 19:02:35 GMT
- Title: SAFER-D: A Self-Adaptive Security Framework for Distributed Computing Architectures
- Authors: Marco Stadler, Michael Vierhauser, Michael Riegler, Daniel Waghubinger, Johannes Sametinger,
- Abstract summary: The rise of the Internet of Things and Cyber-Physical Systems has introduced new challenges on ensuring secure and robust communication.<n>We present our holistic self-adaptive security framework which combines different adaptation strategies to create comprehensive and efficient defense mechanisms.
- Score: 6.145115042061793
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rise of the Internet of Things and Cyber-Physical Systems has introduced new challenges on ensuring secure and robust communication. The growing number of connected devices increases network complexity, leading to higher latency and traffic. Distributed computing architectures (DCAs) have gained prominence to address these issues. This shift has significantly expanded the attack surface, requiring additional security measures to protect all components -- from sensors and actuators to edge nodes and central servers. Recent incidents highlight the difficulty of this task: Cyberattacks, like distributed denial of service attacks, continue to pose severe threats and cause substantial damage. Implementing a holistic defense mechanism remains an open challenge, particularly against attacks that demand both enhanced resilience and rapid response. Addressing this gap requires innovative solutions to enhance the security of DCAs. In this work, we present our holistic self-adaptive security framework which combines different adaptation strategies to create comprehensive and efficient defense mechanisms. We describe how to incorporate the framework into a real-world use case scenario and further evaluate its applicability and efficiency. Our evaluation yields promising results, indicating great potential to further extend the research on our framework.
Related papers
- Autonomous AI-based Cybersecurity Framework for Critical Infrastructure: Real-Time Threat Mitigation [1.4999444543328293]
We propose a hybrid AI-driven cybersecurity framework to enhance real-time vulnerability detection, threat modelling, and automated remediation.<n>Our findings provide actionable insights to strengthen the security and resilience of critical infrastructure systems against emerging cyber threats.
arXiv Detail & Related papers (2025-07-10T04:17:29Z) - CyFence: Securing Cyber-Physical Controllers via Trusted Execution Environment [45.86654759872101]
Cyber-physical systems (CPSs) have experienced a significant technological evolution and increased connectivity, at the cost of greater exposure to cyber-attacks.<n>We propose CyFence, a novel architecture that improves the resilience of closed-loop control systems against cyber-attacks by adding a semantic check.<n>We evaluate CyFence considering a real-world application, consisting of an active braking digital controller, demonstrating that it can mitigate different types of attacks with a negligible overhead.
arXiv Detail & Related papers (2025-06-12T12:22:45Z) - Hierarchical Adversarially-Resilient Multi-Agent Reinforcement Learning for Cyber-Physical Systems Security [0.0]
This paper introduces a novel Hierarchical Adversarially-Resilient Multi-Agent Reinforcement Learning framework.<n>The framework incorporates an adversarial training loop designed to simulate and anticipate evolving cyber threats.
arXiv Detail & Related papers (2025-06-12T01:38:25Z) - An LLM-based Self-Evolving Security Framework for 6G Space-Air-Ground Integrated Networks [49.605335601285496]
6G space-air-ground integrated networks (SAGINs) offer ubiquitous coverage for various mobile applications.<n>We propose a novel security framework for SAGINs based on Large Language Models (LLMs)<n>Our framework produces highly accurate security strategies that remain robust against a variety of unknown attacks.
arXiv Detail & Related papers (2025-05-06T04:14:13Z) - Safety and Security Risk Mitigation in Satellite Missions via Attack-Fault-Defense Trees [2.252059459291148]
This work presents a case study from Ascentio Technologies, a mission-critical system company in Argentina specializing in aerospace.<n>The main focus will be on the Ground Segment for the satellite project currently developed by the company.<n>This paper showcases the application of the Attack-Fault-Defense Tree framework, which integrates attack trees, fault trees, and defense mechanisms into a unified model.
arXiv Detail & Related papers (2025-04-01T17:24:43Z) - ACRIC: Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
Recent security incidents in safety-critical industries exposed how the lack of proper message authentication enables attackers to inject malicious commands or alter system behavior.<n>These shortcomings have prompted new regulations that emphasize the pressing need to strengthen cybersecurity.<n>We introduce ACRIC, a message authentication solution to secure legacy industrial communications.
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - A Comprehensive Analysis of Routing Vulnerabilities and Defense Strategies in IoT Networks [0.0]
The Internet of Things (IoT) has revolutionized various domains, offering significant benefits through enhanced interconnectivity and data exchange.
However, the security challenges associated with IoT networks have become increasingly prominent owing to their inherent vulnerability.
This paper provides an in-depth analysis of the network layer in IoT architectures, highlighting the potential risks posed by routing attacks.
arXiv Detail & Related papers (2024-10-17T04:38:53Z) - Confronting the Reproducibility Crisis: A Case Study of Challenges in Cybersecurity AI [0.0]
A key area in AI-based cybersecurity focuses on defending deep neural networks against malicious perturbations.
We attempt to validate results from prior work on certified robustness using the VeriGauge toolkit.
Our findings underscore the urgent need for standardized methodologies, containerization, and comprehensive documentation.
arXiv Detail & Related papers (2024-05-29T04:37:19Z) - The MESA Security Model 2.0: A Dynamic Framework for Mitigating Stealth Data Exfiltration [0.0]
Stealth Data Exfiltration is a significant cyber threat characterized by covert infiltration, extended undetectability, and unauthorized dissemination of confidential data.
Our findings reveal that conventional defense-in-depth strategies often fall short in combating these sophisticated threats.
As we navigate this complex landscape, it is crucial to anticipate potential threats and continually update our defenses.
arXiv Detail & Related papers (2024-05-17T16:14:45Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Attention-Based Real-Time Defenses for Physical Adversarial Attacks in
Vision Applications [58.06882713631082]
Deep neural networks exhibit excellent performance in computer vision tasks, but their vulnerability to real-world adversarial attacks raises serious security concerns.
This paper proposes an efficient attention-based defense mechanism that exploits adversarial channel-attention to quickly identify and track malicious objects in shallow network layers.
It also introduces an efficient multi-frame defense framework, validating its efficacy through extensive experiments aimed at evaluating both defense performance and computational cost.
arXiv Detail & Related papers (2023-11-19T00:47:17Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Constraints Satisfiability Driven Reinforcement Learning for Autonomous
Cyber Defense [7.321728608775741]
We present a new hybrid autonomous agent architecture that aims to optimize and verify defense policies of reinforcement learning (RL)
We use constraints verification (using satisfiability modulo theory (SMT)) to steer the RL decision-making toward safe and effective actions.
Our evaluation of the presented approach in a simulated CPS environment shows that the agent learns the optimal policy fast and defeats diversified attack strategies in 99% cases.
arXiv Detail & Related papers (2021-04-19T01:08:30Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.