Confronting the Reproducibility Crisis: A Case Study of Challenges in Cybersecurity AI
- URL: http://arxiv.org/abs/2405.18753v2
- Date: Fri, 16 Aug 2024 03:29:18 GMT
- Title: Confronting the Reproducibility Crisis: A Case Study of Challenges in Cybersecurity AI
- Authors: Richard H. Moulton, Gary A. McCully, John D. Hastings,
- Abstract summary: A key area in AI-based cybersecurity focuses on defending deep neural networks against malicious perturbations.
We attempt to validate results from prior work on certified robustness using the VeriGauge toolkit.
Our findings underscore the urgent need for standardized methodologies, containerization, and comprehensive documentation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving field of cybersecurity, ensuring the reproducibility of AI-driven research is critical to maintaining the reliability and integrity of security systems. This paper addresses the reproducibility crisis within the domain of adversarial robustness -- a key area in AI-based cybersecurity that focuses on defending deep neural networks against malicious perturbations. Through a detailed case study, we attempt to validate results from prior work on certified robustness using the VeriGauge toolkit, revealing significant challenges due to software and hardware incompatibilities, version conflicts, and obsolescence. Our findings underscore the urgent need for standardized methodologies, containerization, and comprehensive documentation to ensure the reproducibility of AI models deployed in critical cybersecurity applications. By tackling these reproducibility challenges, we aim to contribute to the broader discourse on securing AI systems against advanced persistent threats, enhancing network and IoT security, and protecting critical infrastructure. This work advocates for a concerted effort within the research community to prioritize reproducibility, thereby strengthening the foundation upon which future cybersecurity advancements are built.
Related papers
- Llama-3.1-FoundationAI-SecurityLLM-Base-8B Technical Report [50.268821168513654]
We present Foundation-Sec-8B, a cybersecurity-focused large language model (LLMs) built on the Llama 3.1 architecture.
We evaluate it across both established and new cybersecurity benchmarks, showing that it matches Llama 3.1-70B and GPT-4o-mini in certain cybersecurity-specific tasks.
By releasing our model to the public, we aim to accelerate progress and adoption of AI-driven tools in both public and private cybersecurity contexts.
arXiv Detail & Related papers (2025-04-28T08:41:12Z) - Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
This survey examines the trustworthiness of GUI agents in five critical dimensions.
We identify major challenges such as vulnerability to adversarial attacks, cascading failure modes in sequential decision-making.
As GUI agents become more widespread, establishing robust safety standards and responsible development practices is essential.
arXiv Detail & Related papers (2025-03-30T13:26:00Z) - Transforming Cyber Defense: Harnessing Agentic and Frontier AI for Proactive, Ethical Threat Intelligence [0.0]
This manuscript explores how the convergence of agentic AI and Frontier AI is transforming cybersecurity.
We examine the roles of real time monitoring, automated incident response, and perpetual learning in forging a resilient, dynamic defense ecosystem.
Our vision is to harmonize technological innovation with unwavering ethical oversight, ensuring that future AI driven security solutions uphold core human values of fairness, transparency, and accountability while effectively countering emerging cyber threats.
arXiv Detail & Related papers (2025-02-28T20:23:35Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
We introduce AISafetyLab, a unified framework and toolkit that integrates representative attack, defense, and evaluation methodologies for AI safety.
AISafetyLab features an intuitive interface that enables developers to seamlessly apply various techniques.
We conduct empirical studies on Vicuna, analyzing different attack and defense strategies to provide valuable insights into their comparative effectiveness.
arXiv Detail & Related papers (2025-02-24T02:11:52Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.
In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
arXiv Detail & Related papers (2025-01-09T03:59:10Z) - Digital Twin for Evaluating Detective Countermeasures in Smart Grid Cybersecurity [0.0]
This study delves into the potential of digital twins, replicating a smart grid's cyber-physical laboratory environment.
We introduce a flexible, comprehensive digital twin model equipped for hardware-in-the-loop evaluations.
arXiv Detail & Related papers (2024-12-05T08:41:08Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Critical Infrastructure Security: Penetration Testing and Exploit Development Perspectives [0.0]
This paper reviews literature on critical infrastructure security, focusing on penetration testing and exploit development.
Findings of this paper reveal inherent vulnerabilities in critical infrastructure and sophisticated threats posed by cyber adversaries.
The review underscores the necessity of continuous and proactive security assessments.
arXiv Detail & Related papers (2024-07-24T13:17:07Z) - Generative AI in Cybersecurity [0.0]
Generative Artificial Intelligence (GAI) has been pivotal in reshaping the field of data analysis, pattern recognition, and decision-making processes.
As GAI rapidly progresses, it outstrips the current pace of cybersecurity protocols and regulatory frameworks.
The study highlights the critical need for organizations to proactively identify and develop more complex defensive strategies to counter the sophisticated employment of GAI in malware creation.
arXiv Detail & Related papers (2024-05-02T19:03:11Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review [3.0969632359049473]
This research paper presents a systematic literature review on the Trust-based cybersecurity security approaches for IoT.
We highlighted the common trust-based mitigation techniques in existence for dealing with these threats.
Several open issues were highlighted, and future research directions presented.
arXiv Detail & Related papers (2023-11-20T12:21:35Z) - Software Repositories and Machine Learning Research in Cyber Security [0.0]
The integration of robust cyber security defenses has become essential across all phases of software development.
Attempts have been made to leverage topic modeling and machine learning for the detection of these early-stage vulnerabilities in the software requirements process.
arXiv Detail & Related papers (2023-11-01T17:46:07Z) - Cyber Security Requirements for Platforms Enhancing AI Reproducibility [0.0]
This study focuses on the field of artificial intelligence (AI) and introduces a new framework for evaluating AI platforms.
Five popular AI platforms; Floydhub, BEAT, Codalab, Kaggle, and OpenML were assessed.
The analysis revealed that none of these platforms fully incorporates the necessary cyber security measures.
arXiv Detail & Related papers (2023-09-27T09:43:46Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.