論文の概要: The Role of Explanation Styles and Perceived Accuracy on Decision Making in Predictive Process Monitoring
- arxiv url: http://arxiv.org/abs/2506.16617v1
- Date: Thu, 19 Jun 2025 21:30:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.263244
- Title: The Role of Explanation Styles and Perceived Accuracy on Decision Making in Predictive Process Monitoring
- Title(参考訳): 予測プロセスモニタリングにおける説明スタイルと判断精度の役割
- Authors: Soobin Chae, Suhwan Lee, Hanna Hauptmann, Hajo A. Reijers, Xixi Lu,
- Abstract要約: 説明可能なAI(XAI)は、予測の背後にある推論を提供することで、この問題に対処することを目指している。
予測プロセスモニタリング(PPM)におけるXAIの現在の評価は、主にユーザ中心の側面を見渡す機能メトリクスに焦点を当てています。
本研究では, 意思決定における説明スタイル(機能的重要性, ルールベース, 対実的)とAIの精度(低いか高いか)の影響について検討した。
- 参考スコア(独自算出の注目度): 1.2808136856881935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive Process Monitoring (PPM) often uses deep learning models to predict the future behavior of ongoing processes, such as predicting process outcomes. While these models achieve high accuracy, their lack of interpretability undermines user trust and adoption. Explainable AI (XAI) aims to address this challenge by providing the reasoning behind the predictions. However, current evaluations of XAI in PPM focus primarily on functional metrics (such as fidelity), overlooking user-centered aspects such as their effect on task performance and decision-making. This study investigates the effects of explanation styles (feature importance, rule-based, and counterfactual) and perceived AI accuracy (low or high) on decision-making in PPM. We conducted a decision-making experiment, where users were presented with the AI predictions, perceived accuracy levels, and explanations of different styles. Users' decisions were measured both before and after receiving explanations, allowing the assessment of objective metrics (Task Performance and Agreement) and subjective metrics (Decision Confidence). Our findings show that perceived accuracy and explanation style have a significant effect.
- Abstract(参考訳): 予測プロセスモニタリング(PPM)は、ディープラーニングモデルを使用して、プロセス結果の予測など、進行中のプロセスの将来の振る舞いを予測する。
これらのモデルは高い精度を達成するが、解釈可能性の欠如はユーザの信頼と採用を損なう。
説明可能なAI(XAI)は、予測の背後にある推論を提供することで、この問題に対処することを目指している。
しかしながら、PPMにおけるXAIの現在の評価は、主に機能的メトリクス(忠実さなど)に焦点を当てており、タスクパフォーマンスや意思決定への影響など、ユーザ中心の側面を見越している。
本研究は,PPMにおける意思決定における説明スタイル(機能的重要性,ルールベース,対実的)とAIの精度(低いか高いか)の影響について検討した。
我々は意思決定実験を行い、ユーザーはAI予測、認識精度レベル、異なるスタイルの説明を提示された。
ユーザの判断は、説明を受けた前後で測定され、客観的指標(タスクパフォーマンスとアグリーメント)と主観的指標(決定信頼)の評価が可能となった。
以上より,知覚的精度と説明様式が有意な影響があることが示唆された。
関連論文リスト
- Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は意思決定タスクを自動化するために使用される。
本稿では,LPMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを評価する。
さまざまな因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成します。
これらのベンチマークにより、LLMが事実を記憶したり、他のショートカットを見つけたりすることで、変化を正確に予測する能力を切り離すことができます。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding [2.8498944632323755]
選択的に観測されたデータにおける予測アルゴリズムの頑健な設計と評価のための統一的なフレームワークを提案する。
我々は、選択されていないユニットと選択されたユニットの間で、平均して結果がどの程度異なるかという一般的な仮定を課す。
我々は,大規模な予測性能推定値のクラスにおける境界値に対するバイアス付き機械学習推定器を開発する。
論文 参考訳(メタデータ) (2022-12-19T20:41:44Z) - Explainability's Gain is Optimality's Loss? -- How Explanations Bias
Decision-making [0.0]
説明は、アルゴリズムと人間の意思決定者とのコミュニケーションを促進するのに役立つ。
因果モデルに関する特徴に基づく説明のセマンティクスは、意思決定者の以前の信念から漏れを引き起こす。
このような違いは、準最適かつ偏った決定結果をもたらす可能性がある。
論文 参考訳(メタデータ) (2022-06-17T11:43:42Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - On the Fairness of Machine-Assisted Human Decisions [3.4069627091757178]
偏りのある人間の意思決定者を含めることで、アルゴリズムの構造と結果の判断の質との間の共通関係を逆転させることができることを示す。
実験室実験では,性別別情報による予測が,意思決定における平均的な性別格差を減少させることを示す。
論文 参考訳(メタデータ) (2021-10-28T17:24:45Z) - Evaluating Explainable Methods for Predictive Process Analytics: A
Functionally-Grounded Approach [2.2448567386846916]
予測プロセス分析は、ビジネスプロセスの実行インスタンスの将来の状態を予測することに焦点を当てる。
現在のLIMEやSHAPのような説明可能な機械学習手法は、ブラックボックスモデルの解釈に利用できる。
XGBoost上に構築されたプロセス予測モデルの解釈におけるLIMEとSHAPの性能評価に,提案手法を適用した。
論文 参考訳(メタデータ) (2020-12-08T05:05:19Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
我々は,異なるレベルの専門知識を持つ人々が,異なるタイプの予測不確実性にどう反応するかを評価するために,ユーザスタディを実施している。
その結果,後続の予測分布を示すことは,MLモデルの予測との相違点が小さくなることがわかった。
このことは、後続の予測分布は、人間の分布の種類や専門性を考慮し、注意を払って使用するべき有用な決定支援として役立つ可能性があることを示唆している。
論文 参考訳(メタデータ) (2020-11-12T02:23:53Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。