Initial Investigation of LLM-Assisted Development of Rule-Based Clinical NLP System
- URL: http://arxiv.org/abs/2506.16628v1
- Date: Thu, 19 Jun 2025 21:55:33 GMT
- Title: Initial Investigation of LLM-Assisted Development of Rule-Based Clinical NLP System
- Authors: Jianlin Shi, Brian T. Bucher,
- Abstract summary: Rule-based natural language processing (NLP) systems are active in clinical settings due to their interpretability and operational efficiency.<n>We proposed a novel approach employing large language models (LLMs) solely during the rule-based systems development phase.<n>Our experiments demonstrated exceptional recall in identifying clinically relevant text snippets.
- Score: 0.10624623833188308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite advances in machine learning (ML) and large language models (LLMs), rule-based natural language processing (NLP) systems remain active in clinical settings due to their interpretability and operational efficiency. However, their manual development and maintenance are labor-intensive, particularly in tasks with large linguistic variability. To overcome these limitations, we proposed a novel approach employing LLMs solely during the rule-based systems development phase. We conducted the initial experiments focusing on the first two steps of developing a rule-based NLP pipeline: find relevant snippets from the clinical note; extract informative keywords from the snippets for the rule-based named entity recognition (NER) component. Our experiments demonstrated exceptional recall in identifying clinically relevant text snippets (Deepseek: 0.98, Qwen: 0.99) and 1.0 in extracting key terms for NER. This study sheds light on a promising new direction for NLP development, enabling semi-automated or automated development of rule-based systems with significantly faster, more cost-effective, and transparent execution compared with deep learning model-based solutions.
Related papers
- Are Large Language Models Dynamic Treatment Planners? An In Silico Study from a Prior Knowledge Injection Angle [3.0391297540732545]
We evaluate large language models (LLMs) as dynamic insulin dosing agents in an in silico Type 1 diabetes simulator.<n>Our results indicate that carefully designed zero-shot prompts enable smaller LLMs to achieve comparable or superior clinical performance.<n>LLMs exhibit notable limitations, such as overly aggressive insulin dosing when prompted with chain-of-thought.
arXiv Detail & Related papers (2025-08-06T13:46:02Z) - Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - Automating Intervention Discovery from Scientific Literature: A Progressive Ontology Prompting and Dual-LLM Framework [56.858564736806414]
This paper proposes a novel framework leveraging large language models (LLMs) to identify interventions in scientific literature.<n>Our approach successfully identified 2,421 interventions from a corpus of 64,177 research articles in the speech-language pathology domain.
arXiv Detail & Related papers (2024-08-20T16:42:23Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)<n>Our research aims to transform existing medication recommendation methodologies using LLMs.<n>To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
Generative Large Language Models (LLMs) hold significant promise in healthcare.
This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center.
arXiv Detail & Related papers (2024-01-05T15:09:57Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Generative Large Language Models Are All-purpose Text Analytics Engines:
Text-to-text Learning Is All Your Need [24.672621081551675]
We formulated 7 key clinical NLP tasks as text-to-text learning and solved them using one unified generative clinical LLM.
The proposed approach achieved state-of-the-art performance for 5 out of 7 major clinical NLP tasks using one unified generative LLM.
arXiv Detail & Related papers (2023-12-11T04:00:26Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - Few-Shot Learning for Clinical Natural Language Processing Using Siamese
Neural Networks [3.9586758145580014]
Clinical Natural Language Processing (NLP) has become an emerging technology in healthcare.
Deep learning has achieved state-of-the-art performance in many clinical NLP tasks.
Training deep learning models usually require large annotated datasets, which are normally not publicly available.
arXiv Detail & Related papers (2022-08-31T15:36:27Z) - Towards Structuring Real-World Data at Scale: Deep Learning for
Extracting Key Oncology Information from Clinical Text with Patient-Level
Supervision [10.929271646369887]
The majority of detailed patient information in real-world data (RWD) is only consistently available in free-text clinical documents.
Traditional rule-based systems are vulnerable to the prevalent linguistic variations and ambiguities in clinical text.
We propose leveraging patient-level supervision from medical registries, which are often readily available and capture key patient information.
arXiv Detail & Related papers (2022-03-20T03:42:03Z) - HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural
Language Processing [3.762895631262445]
We developed a novel prompt-based clinical NLP framework called HealthPrompt.
We performed an in-depth analysis of HealthPrompt on six different PLMs in a no-data setting.
Our experiments prove that prompts effectively capture the context of clinical texts and perform remarkably well without any training data.
arXiv Detail & Related papers (2022-03-09T21:44:28Z) - Continual Learning for Natural Language Generation in Task-oriented
Dialog Systems [72.92029584113676]
Natural language generation (NLG) is an essential component of task-oriented dialog systems.
We study NLG in a "continual learning" setting to expand its knowledge to new domains or functionalities incrementally.
The major challenge towards this goal is catastrophic forgetting, meaning that a continually trained model tends to forget the knowledge it has learned before.
arXiv Detail & Related papers (2020-10-02T10:32:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.