Are Large Language Models Dynamic Treatment Planners? An In Silico Study from a Prior Knowledge Injection Angle
- URL: http://arxiv.org/abs/2508.04755v1
- Date: Wed, 06 Aug 2025 13:46:02 GMT
- Title: Are Large Language Models Dynamic Treatment Planners? An In Silico Study from a Prior Knowledge Injection Angle
- Authors: Zhiyao Luo, Tingting Zhu,
- Abstract summary: We evaluate large language models (LLMs) as dynamic insulin dosing agents in an in silico Type 1 diabetes simulator.<n>Our results indicate that carefully designed zero-shot prompts enable smaller LLMs to achieve comparable or superior clinical performance.<n>LLMs exhibit notable limitations, such as overly aggressive insulin dosing when prompted with chain-of-thought.
- Score: 3.0391297540732545
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement learning (RL)-based dynamic treatment regimes (DTRs) hold promise for automating complex clinical decision-making, yet their practical deployment remains hindered by the intensive engineering required to inject clinical knowledge and ensure patient safety. Recent advancements in large language models (LLMs) suggest a complementary approach, where implicit prior knowledge and clinical heuristics are naturally embedded through linguistic prompts without requiring environment-specific training. In this study, we rigorously evaluate open-source LLMs as dynamic insulin dosing agents in an in silico Type 1 diabetes simulator, comparing their zero-shot inference performance against small neural network-based RL agents (SRAs) explicitly trained for the task. Our results indicate that carefully designed zero-shot prompts enable smaller LLMs (e.g., Qwen2.5-7B) to achieve comparable or superior clinical performance relative to extensively trained SRAs, particularly in stable patient cohorts. However, LLMs exhibit notable limitations, such as overly aggressive insulin dosing when prompted with chain-of-thought (CoT) reasoning, highlighting critical failure modes including arithmetic hallucination, temporal misinterpretation, and inconsistent clinical logic. Incorporating explicit reasoning about latent clinical states (e.g., meals) yielded minimal performance gains, underscoring the current model's limitations in capturing complex, hidden physiological dynamics solely through textual inference. Our findings advocate for cautious yet optimistic integration of LLMs into clinical workflows, emphasising the necessity of targeted prompt engineering, careful validation, and potentially hybrid approaches that combine linguistic reasoning with structured physiological modelling to achieve safe, robust, and clinically effective decision-support systems.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - Limitations of Large Language Models in Clinical Problem-Solving Arising from Inflexible Reasoning [3.3482359447109866]
Large Language Models (LLMs) have attained human-level accuracy on medical question-answer (QA) benchmarks.<n>Their limitations in navigating open-ended clinical scenarios have recently been shown.<n>We present the medical abstraction and reasoning corpus (M-ARC)<n>We find that LLMs, including current state-of-the-art o1 and Gemini models, perform poorly compared to physicians on M-ARC.
arXiv Detail & Related papers (2025-02-05T18:14:27Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.<n>We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.<n>Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models [10.258261180305439]
Large language models (LLMs) offer a new approach to assessing complex communication metrics.
LLMs offer the potential to advance the field through integration into passive sensing and just-in-time intervention systems.
This study explores LLMs as evaluators of palliative care communication quality, leveraging their linguistic, in-context learning, and reasoning capabilities.
arXiv Detail & Related papers (2024-09-23T16:39:12Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
We introduce a knowledge-guided in-context learning framework to enable large language models to process structured clinical data.<n>Our approach integrates domain-specific feature groupings, carefully balanced few-shot examples, and task-specific prompting strategies.
arXiv Detail & Related papers (2024-05-10T06:52:44Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)<n>Our research aims to transform existing medication recommendation methodologies using LLMs.<n>To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
Generative Large Language Models (LLMs) hold significant promise in healthcare.
This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center.
arXiv Detail & Related papers (2024-01-05T15:09:57Z) - Aligning Large Language Models for Clinical Tasks [0.0]
Large Language Models (LLMs) have demonstrated remarkable adaptability, showcasing their capacity to excel in tasks for which they were not explicitly trained.
We propose an alignment strategy for medical question-answering, known as 'expand-guess-refine'
A preliminary analysis of this method demonstrated outstanding performance, achieving a score of 70.63% on a subset of questions sourced from the USMLE dataset.
arXiv Detail & Related papers (2023-09-06T10:20:06Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.