Mechanisms vs. Outcomes: Probing for Syntax Fails to Explain Performance on Targeted Syntactic Evaluations
- URL: http://arxiv.org/abs/2506.16678v1
- Date: Fri, 20 Jun 2025 01:46:50 GMT
- Title: Mechanisms vs. Outcomes: Probing for Syntax Fails to Explain Performance on Targeted Syntactic Evaluations
- Authors: Ananth Agarwal, Jasper Jian, Christopher D. Manning, Shikhar Murty,
- Abstract summary: Large Language Models (LLMs) exhibit a robust mastery of syntax when processing and generating text.<n>No comprehensive study has yet established whether a model's probing accuracy reliably predicts its downstream syntactic performance.
- Score: 33.04242471060053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) exhibit a robust mastery of syntax when processing and generating text. While this suggests internalized understanding of hierarchical syntax and dependency relations, the precise mechanism by which they represent syntactic structure is an open area within interpretability research. Probing provides one way to identify the mechanism of syntax being linearly encoded in activations, however, no comprehensive study has yet established whether a model's probing accuracy reliably predicts its downstream syntactic performance. Adopting a "mechanisms vs. outcomes" framework, we evaluate 32 open-weight transformer models and find that syntactic features extracted via probing fail to predict outcomes of targeted syntax evaluations across English linguistic phenomena. Our results highlight a substantial disconnect between latent syntactic representations found via probing and observable syntactic behaviors in downstream tasks.
Related papers
- Controlled Agentic Planning & Reasoning for Mechanism Synthesis [8.273778202041365]
This work presents a dual-agent Large Language Model (LLM)-based reasoning method for mechanism synthesis.<n>It is capable of reasoning at both linguistic and symbolic levels to generate geometrical and dynamic outcomes.
arXiv Detail & Related papers (2025-05-23T08:16:32Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
We present the semantic notion of agentivity as a case study for probing such interactions.
This suggests LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery.
arXiv Detail & Related papers (2023-05-29T16:24:01Z) - Interpretable Automatic Fine-grained Inconsistency Detection in Text
Summarization [56.94741578760294]
We propose the task of fine-grained inconsistency detection, the goal of which is to predict the fine-grained types of factual errors in a summary.
Motivated by how humans inspect factual inconsistency in summaries, we propose an interpretable fine-grained inconsistency detection model, FineGrainFact.
arXiv Detail & Related papers (2023-05-23T22:11:47Z) - Token-wise Decomposition of Autoregressive Language Model Hidden States
for Analyzing Model Predictions [9.909170013118775]
This work presents a linear decomposition of final hidden states from autoregressive language models based on each initial input token.
Using the change in next-word probability as a measure of importance, this work first examines which context words make the biggest contribution to language model predictions.
arXiv Detail & Related papers (2023-05-17T23:55:32Z) - Syntactic Substitutability as Unsupervised Dependency Syntax [31.488677474152794]
We model a more general property implicit in the definition of dependency relations, syntactic substitutability.
This property captures the fact that words at either end of a dependency can be substituted with words from the same category.
We show that increasing the number of substitutions used improves parsing accuracy on natural data.
arXiv Detail & Related papers (2022-11-29T09:01:37Z) - Probing for Incremental Parse States in Autoregressive Language Models [9.166953511173903]
Next-word predictions from autoregressive neural language models show remarkable sensitivity to syntax.
This work evaluates the extent to which this behavior arises as a result of a learned ability to maintain implicit representations of incremental syntactic structures.
arXiv Detail & Related papers (2022-11-17T18:15:31Z) - Syntactic Perturbations Reveal Representational Correlates of
Hierarchical Phrase Structure in Pretrained Language Models [22.43510769150502]
It is not entirely clear what aspects of sentence-level syntax are captured by vector-based language representations.
We show that Transformers build sensitivity to larger parts of the sentence along their layers, and that hierarchical phrase structure plays a role in this process.
arXiv Detail & Related papers (2021-04-15T16:30:31Z) - Introducing Syntactic Structures into Target Opinion Word Extraction
with Deep Learning [89.64620296557177]
We propose to incorporate the syntactic structures of the sentences into the deep learning models for targeted opinion word extraction.
We also introduce a novel regularization technique to improve the performance of the deep learning models.
The proposed model is extensively analyzed and achieves the state-of-the-art performance on four benchmark datasets.
arXiv Detail & Related papers (2020-10-26T07:13:17Z) - Syntactic Structure Distillation Pretraining For Bidirectional Encoders [49.483357228441434]
We introduce a knowledge distillation strategy for injecting syntactic biases into BERT pretraining.
We distill the approximate marginal distribution over words in context from the syntactic LM.
Our findings demonstrate the benefits of syntactic biases, even in representation learners that exploit large amounts of data.
arXiv Detail & Related papers (2020-05-27T16:44:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.