Anomaly Detection in Event-triggered Traffic Time Series via Similarity Learning
- URL: http://arxiv.org/abs/2506.16855v1
- Date: Fri, 20 Jun 2025 09:09:04 GMT
- Title: Anomaly Detection in Event-triggered Traffic Time Series via Similarity Learning
- Authors: Shaoyu Dou, Kai Yang, Yang Jiao, Chengbo Qiu, Kui Ren,
- Abstract summary: The overarching goal of this paper is to develop an unsupervised learning framework that is capable of learning similarities among a set of event-triggered time series.<n>The proposed framework aspires to offer a stepping stone that gives rise to a systematic approach to model and learn similarities among a multitude of event-triggered time series.
- Score: 16.352022450912013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series analysis has achieved great success in cyber security such as intrusion detection and device identification. Learning similarities among multiple time series is a crucial problem since it serves as the foundation for downstream analysis. Due to the complex temporal dynamics of the event-triggered time series, it often remains unclear which similarity metric is appropriate for security-related tasks, such as anomaly detection and clustering. The overarching goal of this paper is to develop an unsupervised learning framework that is capable of learning similarities among a set of event-triggered time series. From the machine learning vantage point, the proposed framework harnesses the power of both hierarchical multi-resolution sequential autoencoders and the Gaussian Mixture Model (GMM) to effectively learn the low-dimensional representations from the time series. Finally, the obtained similarity measure can be easily visualized for the explanation. The proposed framework aspires to offer a stepping stone that gives rise to a systematic approach to model and learn similarities among a multitude of event-triggered time series. Through extensive qualitative and quantitative experiments, it is revealed that the proposed method outperforms state-of-the-art methods considerably.
Related papers
- Robust Group Anomaly Detection for Quasi-Periodic Network Time Series [47.60720976101336]
We propose a framework to identify unusual and interesting time series within a network time series database.<n>We develop a surrogate-based optimization algorithm that can efficiently train the seq2GMM model.
arXiv Detail & Related papers (2025-06-20T08:11:04Z) - DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection [12.658792855097198]
Time series anomaly holds notable importance for risk identification and fault detection across diverse application domains.<n>Unsupervised learning methods have become popular because they have no requirement for labels.<n>We propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD)
arXiv Detail & Related papers (2025-04-19T06:35:06Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Task-aware Similarity Learning for Event-triggered Time Series [25.101509208153804]
The overarching goal of this paper is to develop an unsupervised learning framework that is capable of learning task-aware similarities among unlabeled event-triggered time series.
The proposed framework aspires to offer a stepping stone that gives rise to a systematic approach to model and learn similarities among a multitude of event-triggered time series.
arXiv Detail & Related papers (2022-07-17T12:54:10Z) - An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series [2.9685635948299995]
We propose an unsupervised Attention-based Convolutional Long Short-Term Memory (ConvLSTM) Autoencoder with Dynamic Thresholding (ACLAE-DT) framework for anomaly detection and diagnosis.
The framework starts by pre-processing and enriching the data, before constructing feature images to characterize the system statuses.
The constructed feature images are fed into an attention-based ConvLSTM autoencoder, which aims to encode the constructed feature images and capture the temporal behavior.
The reconstruction errors are then computed and subjected to a statistical-based, dynamic thresholding mechanism to detect and diagnose the anomalies
arXiv Detail & Related papers (2022-01-23T04:01:43Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
Contrastive learning is a family of self-supervised methods where a model is trained to solve a classification task constructed from unlabeled data.
We show that a properly constructed contrastive learning task can be used to estimate the transition kernel for small-to-mid-range intervals in the diffusion case.
arXiv Detail & Related papers (2021-03-03T23:06:47Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.