Task-aware Similarity Learning for Event-triggered Time Series
- URL: http://arxiv.org/abs/2207.08159v1
- Date: Sun, 17 Jul 2022 12:54:10 GMT
- Title: Task-aware Similarity Learning for Event-triggered Time Series
- Authors: Shaoyu Dou, Kai Yang, Yang Jiao, Chengbo Qiu, Kui Ren
- Abstract summary: The overarching goal of this paper is to develop an unsupervised learning framework that is capable of learning task-aware similarities among unlabeled event-triggered time series.
The proposed framework aspires to offer a stepping stone that gives rise to a systematic approach to model and learn similarities among a multitude of event-triggered time series.
- Score: 25.101509208153804
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series analysis has achieved great success in diverse applications such
as network security, environmental monitoring, and medical informatics.
Learning similarities among different time series is a crucial problem since it
serves as the foundation for downstream analysis such as clustering and anomaly
detection. It often remains unclear what kind of distance metric is suitable
for similarity learning due to the complex temporal dynamics of the time series
generated from event-triggered sensing, which is common in diverse
applications, including automated driving, interactive healthcare, and smart
home automation. The overarching goal of this paper is to develop an
unsupervised learning framework that is capable of learning task-aware
similarities among unlabeled event-triggered time series. From the machine
learning vantage point, the proposed framework harnesses the power of both
hierarchical multi-scale sequence autoencoders and Gaussian Mixture Model (GMM)
to effectively learn the low-dimensional representations from the time series.
Finally, the obtained similarity measure can be easily visualized for
explaining. The proposed framework aspires to offer a stepping stone that gives
rise to a systematic approach to model and learn similarities among a multitude
of event-triggered time series. Through extensive qualitative and quantitative
experiments, it is revealed that the proposed method outperforms
state-of-the-art methods considerably.
Related papers
- TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Bootstrap aggregation and confidence measures to improve time series
causal discovery [0.0]
We introduce a novel bootstrap approach designed for time series causal discovery that preserves the temporal dependencies and lag structure.
We combine this approach with the state-of-the-art conditional-independence-based algorithm PCMCI+.
arXiv Detail & Related papers (2023-06-15T08:37:16Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - Time Series Anomaly Detection by Cumulative Radon Features [32.36217153362305]
In this work, we argue that shallow features suffice when combined with distribution distance measures.
Our approach models each time series as a high dimensional empirical distribution of features, where each time-point constitutes a single sample.
We show that by parameterizing each time series using cumulative Radon features, we are able to efficiently and effectively model the distribution of normal time series.
arXiv Detail & Related papers (2022-02-08T18:58:53Z) - An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series [2.9685635948299995]
We propose an unsupervised Attention-based Convolutional Long Short-Term Memory (ConvLSTM) Autoencoder with Dynamic Thresholding (ACLAE-DT) framework for anomaly detection and diagnosis.
The framework starts by pre-processing and enriching the data, before constructing feature images to characterize the system statuses.
The constructed feature images are fed into an attention-based ConvLSTM autoencoder, which aims to encode the constructed feature images and capture the temporal behavior.
The reconstruction errors are then computed and subjected to a statistical-based, dynamic thresholding mechanism to detect and diagnose the anomalies
arXiv Detail & Related papers (2022-01-23T04:01:43Z) - Towards Similarity-Aware Time-Series Classification [51.2400839966489]
We study time-series classification (TSC), a fundamental task of time-series data mining.
We propose Similarity-Aware Time-Series Classification (SimTSC), a framework that models similarity information with graph neural networks (GNNs)
arXiv Detail & Related papers (2022-01-05T02:14:57Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
Contrastive learning is a family of self-supervised methods where a model is trained to solve a classification task constructed from unlabeled data.
We show that a properly constructed contrastive learning task can be used to estimate the transition kernel for small-to-mid-range intervals in the diffusion case.
arXiv Detail & Related papers (2021-03-03T23:06:47Z) - Multi-Time Attention Networks for Irregularly Sampled Time Series [18.224344440110862]
Irregular sampling occurs in many time series modeling applications.
We propose a new deep learning framework for this setting that we call Multi-Time Attention Networks.
Our results show that our approach performs as well or better than a range of baseline and recently proposed models.
arXiv Detail & Related papers (2021-01-25T18:57:42Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.