Scalable and Reliable Multi-agent Reinforcement Learning for Traffic Assignment
- URL: http://arxiv.org/abs/2506.17029v1
- Date: Fri, 20 Jun 2025 14:25:23 GMT
- Title: Scalable and Reliable Multi-agent Reinforcement Learning for Traffic Assignment
- Authors: Leizhen Wang, Peibo Duan, Cheng Lyu, Zewen Wang, Zhiqiang He, Nan Zheng, Zhenliang Ma,
- Abstract summary: This study introduces MARL-OD-DA, a new MARL framework for the traffic assignment problem.<n> Experiments demonstrate that the proposed MARL framework effectively handles medium-sized networks with extensive and varied city-level OD demand.<n>When implemented in the SiouxFalls network, MARL-OD-DA achieves better assignment solutions in 10 steps, with a relative gap that is 94.99% lower than that of conventional methods.
- Score: 11.758301752971505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of metropolitan cities and the increase in travel demands impose stringent requirements on traffic assignment methods. Multi-agent reinforcement learning (MARL) approaches outperform traditional methods in modeling adaptive routing behavior without requiring explicit system dynamics, which is beneficial for real-world deployment. However, MARL frameworks face challenges in scalability and reliability when managing extensive networks with substantial travel demand, which limiting their practical applicability in solving large-scale traffic assignment problems. To address these challenges, this study introduces MARL-OD-DA, a new MARL framework for the traffic assignment problem, which redefines agents as origin-destination (OD) pair routers rather than individual travelers, significantly enhancing scalability. Additionally, a Dirichlet-based action space with action pruning and a reward function based on the local relative gap are designed to enhance solution reliability and improve convergence efficiency. Experiments demonstrate that the proposed MARL framework effectively handles medium-sized networks with extensive and varied city-level OD demand, surpassing existing MARL methods. When implemented in the SiouxFalls network, MARL-OD-DA achieves better assignment solutions in 10 steps, with a relative gap that is 94.99% lower than that of conventional methods.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Meta-Federated Learning: A Novel Approach for Real-Time Traffic Flow Management [0.0]
This paper introduces a novel approach by combining Federated Learning (FL) and Meta-Learning (ML) to create a decentralized, scalable, and adaptive traffic management system.<n>We implement our model across a simulated network of smart traffic devices, demonstrating that Meta-Federated Learning significantly outperforms traditional models in terms of prediction accuracy and response time.<n>Our approach shows remarkable adaptability to sudden changes in traffic patterns, suggesting a scalable solution for real-time traffic management in smart cities.
arXiv Detail & Related papers (2025-01-28T07:24:24Z) - AMM: Adaptive Modularized Reinforcement Model for Multi-city Traffic Signal Control [9.885854146962624]
Traffic signal control (TSC) is an important and widely studied direction.<n>Applying reinforcement learning (RL) methods to the real world is challenging due to the huge cost of experiments in real-world traffic environments.<n>One possible solution is TSC domain adaptation, which adapts trained models to target environments.
arXiv Detail & Related papers (2025-01-05T13:59:08Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.<n>This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs [47.600901884970845]
This paper investigates the use of multi-agent reinforcement learning (MARL) to address distributed channel access in wireless local area networks.<n>In particular, we consider the challenging yet more practical case where the agents heterogeneously adopt value-based or policy-based reinforcement learning algorithms to train the model.<n>We propose a heterogeneous MARL training framework, named QPMIX, which adopts a centralized training with distributed execution paradigm to enable heterogeneous agents to collaborate.
arXiv Detail & Related papers (2024-12-18T13:50:31Z) - OffLight: An Offline Multi-Agent Reinforcement Learning Framework for Traffic Signal Control [1.2540429019617183]
We introduce OffLight, a novel offline MARL framework designed to handle heterogeneous behavior policies in TSC datasets.<n>OffLight incorporates Importance Sampling (IS) to correct for distributional shifts and Return-Based Prioritized Sampling (RBPS) to focus on high-quality experiences.<n>Experiments show OffLight outperforms existing offline RL methods, achieving up to a 7.8% reduction in average travel time and 11.2% decrease in queue length.
arXiv Detail & Related papers (2024-11-10T21:26:17Z) - Large-Scale Traffic Signal Control by a Nash Deep Q-network Approach [7.23135508361981]
We introduce an off-policy nash deep Q-Network (OPNDQN) algorithm, which mitigates the weakness of both fully centralized and MARL approaches.
One of main advantages of OPNDQN is to mitigate the non-stationarity of multi-agent Markov process.
We show the dominant superiority of OPNDQN over several existing MARL approaches in terms of average queue length, episode training reward and average waiting time.
arXiv Detail & Related papers (2023-01-02T12:58:51Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Multi-Agent Reinforcement Learning for Network Load Balancing in Data
Center [4.141301293112916]
This paper presents the network load balancing problem, a challenging real-world task for reinforcement learning methods.
The cooperative network load balancing task is formulated as a Dec-POMDP problem, which naturally induces the MARL methods.
To bridge the reality gap for applying learning-based methods, all methods are directly trained and evaluated on an emulation system.
arXiv Detail & Related papers (2022-01-27T18:47:59Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - A Modular and Transferable Reinforcement Learning Framework for the
Fleet Rebalancing Problem [2.299872239734834]
We propose a modular framework for fleet rebalancing based on model-free reinforcement learning (RL)
We formulate RL state and action spaces as distributions over a grid of the operating area, making the framework scalable.
Numerical experiments, using real-world trip and network data, demonstrate that this approach has several distinct advantages over baseline methods.
arXiv Detail & Related papers (2021-05-27T16:32:28Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.