Robust Training with Data Augmentation for Medical Imaging Classification
- URL: http://arxiv.org/abs/2506.17133v1
- Date: Fri, 20 Jun 2025 16:36:39 GMT
- Title: Robust Training with Data Augmentation for Medical Imaging Classification
- Authors: Josué Martínez-Martínez, Olivia Brown, Mostafa Karami, Sheida Nabavi,
- Abstract summary: Deep neural networks are increasingly being used to detect and diagnose medical conditions using medical imaging.<n>Despite their utility, these models are highly vulnerable to adversarial attacks and distribution shifts.<n>We propose a robust training algorithm with data augmentation to mitigate these vulnerabilities in medical image classification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are increasingly being used to detect and diagnose medical conditions using medical imaging. Despite their utility, these models are highly vulnerable to adversarial attacks and distribution shifts, which can affect diagnostic reliability and undermine trust among healthcare professionals. In this study, we propose a robust training algorithm with data augmentation (RTDA) to mitigate these vulnerabilities in medical image classification. We benchmark classifier robustness against adversarial perturbations and natural variations of RTDA and six competing baseline techniques, including adversarial training and data augmentation approaches in isolation and combination, using experimental data sets with three different imaging technologies (mammograms, X-rays, and ultrasound). We demonstrate that RTDA achieves superior robustness against adversarial attacks and improved generalization performance in the presence of distribution shift in each image classification task while maintaining high clean accuracy.
Related papers
- Federated Learning with LoRA Optimized DeiT and Multiscale Patch Embedding for Secure Eye Disease Recognition [2.1358421658740214]
This study introduces a data-efficient image transformer (DeIT)-based approach to advance AI-powered medical imaging and disease detection.<n>It achieves state-of-the-art performance, with the highest AUC, F1 score, precision, minimal loss, and Top-5 accuracy.<n>Grad-CAM++ visualizations improve interpretability by highlighting critical pathological regions, enhancing the model's clinical relevance.
arXiv Detail & Related papers (2025-05-11T13:51:56Z) - Trustworthy image-to-image translation: evaluating uncertainty calibration in unpaired training scenarios [0.0]
Mammographic screening is an effective method for detecting breast cancer, facilitating early diagnosis.<n>Deep neural networks have been shown effective in some studies, but their tendency to overfit leaves considerable risk for poor generalisation and misdiagnosis.<n>Data augmentation schemes based on unpaired neural style transfer models have been proposed that improve generalisability.<n>We evaluate their performance when trained on image patches parsed from three open access mammography datasets and one non-medical image dataset.
arXiv Detail & Related papers (2025-01-29T11:09:50Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Adversarial-Robust Transfer Learning for Medical Imaging via Domain
Assimilation [17.46080957271494]
The scarcity of publicly available medical images has led contemporary algorithms to depend on pretrained models grounded on a large set of natural images.
A significant em domain discrepancy exists between natural and medical images, which causes AI models to exhibit heightened em vulnerability to adversarial attacks.
This paper proposes a em domain assimilation approach that introduces texture and color adaptation into transfer learning, followed by a texture preservation component to suppress undesired distortion.
arXiv Detail & Related papers (2024-02-25T06:39:15Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
Once deployed, medical image analysis methods are often faced with unexpected image corruptions and noise perturbations.<n>LaDiNE is a novel ensemble learning method combining the robustness of Vision Transformers with diffusion-based generative models.<n>Experiments on tuberculosis chest X-rays and melanoma skin cancer datasets demonstrate that LaDiNE achieves superior performance compared to a wide range of state-of-the-art methods.
arXiv Detail & Related papers (2023-10-24T15:53:07Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Towards Robust General Medical Image Segmentation [2.127049691404299]
We propose a new framework to assess the robustness of general medical image segmentation systems.
We present a novel lattice architecture for RObust Generic medical image segmentation (ROG)
Our results show that ROG is capable of generalizing across different tasks of the MSD and largely surpasses the state-of-the-art under sophisticated adversarial attacks.
arXiv Detail & Related papers (2021-07-09T07:17:05Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.