論文の概要: YASMOT: Yet another stereo image multi-object tracker
- arxiv url: http://arxiv.org/abs/2506.17186v1
- Date: Fri, 20 Jun 2025 17:40:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.570025
- Title: YASMOT: Yet another stereo image multi-object tracker
- Title(参考訳): YASMOT: また別のステレオ画像マルチオブジェクトトラッカー
- Authors: Ketil Malde,
- Abstract要約: Yasmotは軽量でフレキシブルな物体追跡装置で 一般的な物体検出装置から出力を処理できる
オブジェクト検出器のアンサンブルからコンセンサス検出を生成する機能を含んでいる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There now exists many popular object detectors based on deep learning that can analyze images and extract locations and class labels for occurrences of objects. For image time series (i.e., video or sequences of stills), tracking objects over time and preserving object identity can help to improve object detection performance, and is necessary for many downstream tasks, including classifying and predicting behaviors, and estimating total abundances. Here we present yasmot, a lightweight and flexible object tracker that can process the output from popular object detectors and track objects over time from either monoscopic or stereoscopic camera configurations. In addition, it includes functionality to generate consensus detections from ensembles of object detectors.
- Abstract(参考訳): 現在、画像を分析し、オブジェクトの発生の場所やクラスラベルを抽出できるディープラーニングに基づく多くの人気オブジェクト検出器が存在する。
画像時系列(静止画のビデオまたはシーケンス)では、時間とともにオブジェクトを追跡し、オブジェクトのアイデンティティを保存することは、オブジェクトの検出性能を向上させるのに役立ち、動作の分類や予測、総量の推定など、多くの下流タスクに必要となる。
今回紹介するYasmotは軽量でフレキシブルなオブジェクトトラッカーで、人気の高い物体検出器からの出力を処理し、モノスコープまたは立体カメラのコンフィグレーションから時間をかけてオブジェクトを追跡する。
さらに、オブジェクト検出器のアンサンブルからコンセンサス検出を生成する機能も備えている。
関連論文リスト
- Object criticality for safer navigation [1.565361244756411]
対象検出器が与えられた場合、その関連性に基づいてオブジェクトをフィルタリングし、関連するオブジェクトの欠落のリスクを低減し、危険な軌道の可能性を低減し、一般的に軌道の質を向上させる。
対象物検知器を与えられた場合、その関連性に基づいてオブジェクトをフィルタリングし、失う対象のリスクを低減し、危険な軌道の可能性を低減し、一般的に軌道の質を向上させる。
論文 参考訳(メタデータ) (2024-04-25T09:02:22Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
本稿では,多目的追跡パイプラインのためのビデオオブジェクト中心モデルを提案する。
オブジェクト中心のスロットを検出出力に適応するインデックスマージモジュールと、オブジェクトメモリモジュールで構成される。
オブジェクト中心学習に特化して、オブジェクトのローカライゼーションと機能バインディングのためのスパース検出ラベルしか必要としない。
論文 参考訳(メタデータ) (2023-09-01T03:34:12Z) - Introduction of a tree-based technique for efficient and real-time label
retrieval in the object tracking system [1.6099403809839035]
本稿では,大規模ビデオ監視システムにおける移動物体のリアルタイム追跡品質の問題に対処する。
本稿では,複数のオブジェクトを自動的にラベル付けして,インデックス化機構を用いた効率的なリアルタイムトラッキングを実現する手法を提案する。
論文 参考訳(メタデータ) (2022-05-31T00:13:53Z) - Context-Aware Transfer Attacks for Object Detection [51.65308857232767]
本稿では,オブジェクト検出のためのコンテキスト認識攻撃を新たに生成する手法を提案する。
オブジェクトとその相対的な位置と大きさの共起をコンテキスト情報として利用することにより、ターゲットの誤分類攻撃をうまく生成できることを示す。
論文 参考訳(メタデータ) (2021-12-06T18:26:39Z) - Learning to Track Object Position through Occlusion [32.458623495840904]
オクルージョンは、物体検出器やトラッカーが直面する最も重要な課題の1つである。
本稿では,領域ベースビデオオブジェクト検出装置の成功に基づくトラッキング・バイ・検出手法を提案する。
提案手法は,インターネットから収集した家具組立ビデオのデータセットにおいて,優れた結果が得られる。
論文 参考訳(メタデータ) (2021-06-20T22:29:46Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - A Simple and Effective Use of Object-Centric Images for Long-Tailed
Object Detection [56.82077636126353]
シーン中心画像における物体検出を改善するために,物体中心画像を活用する。
私たちは、シンプルで驚くほど効果的なフレームワークを提示します。
我々の手法は、レアオブジェクトのオブジェクト検出(およびインスタンスセグメンテーション)の精度を相対的に50%(および33%)向上させることができる。
論文 参考訳(メタデータ) (2021-02-17T17:27:21Z) - Plug & Play Convolutional Regression Tracker for Video Object Detection [37.47222104272429]
ビデオオブジェクト検出ターゲットは、オブジェクトのバウンディングボックスを同時にローカライズし、所定のビデオ内のクラスを識別する。
ビデオオブジェクト検出の課題のひとつは、ビデオ全体にわたるすべてのオブジェクトを一貫して検出することだ。
ビデオオブジェクト検出タスクのためのPlug & Playスケール適応型畳み込みレグレッショントラッカーを提案する。
論文 参考訳(メタデータ) (2020-03-02T15:57:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。